Question

Consider the following equation: A2(g) + 3B2(g) ⇌ 2AB3(g) ΔH = -500 kJ/mole 1. How will...

Consider the following equation:
A2(g) + 3B2(g) ⇌ 2AB3(g) ΔH = -500 kJ/mole

1. How will the equilibrium shift if B2 is added? How will the equilibrium shift if AB3 is added? How will the equilibrium shift if A2 is removed? How will the equilibrium shift if AB3 is removed?


2. What side of the reaction would heat go on? How will the equilibrium shift if the system is heated? How will the equilibrium shift if the system is cooled?

3. How will the equilibrium shift if the pressure is increased? How will equilibrium shift if the pressure is decreased?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the reaction, 2 NF3 (g) ' 2 N2 (g) + 3 F2 (g) ΔH° =...
Consider the reaction, 2 NF3 (g) ' 2 N2 (g) + 3 F2 (g) ΔH° = + 260.8 kJ, ΔS° = + 278.5 J/K At what temperature will the system be at equilibrium, when all gases are present at 1 atm (standard pressure conditions)? Calculate the value of the equilibrium constant for the reaction above at 500.0°C.
.   Consider the following equilibrium: 2 NO2 (g) + O2 (g) ⇌ 2 NO3 (g) +...
.   Consider the following equilibrium: 2 NO2 (g) + O2 (g) ⇌ 2 NO3 (g) + heat. (A)   How would the equilibrium shift if extra NO2 were added? (B) How would the equilibrium shift if O2 were removed? (C) How would you change the temperature to cause a shift to the products? (D) How would you change the pressure/volume to cause a shift to the reactants?
Thermochemical Equations 07a (kJ) Consider the following thermochemical equation for the combustion of butane. 2C4H10(g)+15O2(g)→8CO2(g)+10H2O(g)ΔH∘rxn=−5314.6kJ Part...
Thermochemical Equations 07a (kJ) Consider the following thermochemical equation for the combustion of butane. 2C4H10(g)+15O2(g)→8CO2(g)+10H2O(g)ΔH∘rxn=−5314.6kJ Part A Calculate the heat associated with the consumption of 1.158 mol of O2 in this reaction. Use the correct sign for q q = +   kJ   SubmitMy AnswersGive Up Incorrect; Try Again; 6 attempts remaining Part B Calculate the heat associated with combustion of 29.46 g of butane. Use the correct sign for q q =   kJ   SubmitMy AnswersGive Up Part C Calculate the...
4. Predict the direction of the equilibrium for each change for the following reaction. 2H2(G) +...
4. Predict the direction of the equilibrium for each change for the following reaction. 2H2(G) + o2 (G) ⇌ 2H2O(g) + heat a. H2O is removed as it is being generated =? b. H2 is added=? c. the pressure on the system is decreased=? d. O2 is removed=? e. coding the reaction=? Please show all work
Use the balanced equation for the exothermic reaction, N2 (g) + 3 H2 (g)----->2 NH3 (g),...
Use the balanced equation for the exothermic reaction, N2 (g) + 3 H2 (g)----->2 NH3 (g), to answer the 4 questions below. In which direction will the system shift when hydrogen is added? _____________ In which direction will the system shift when nitrogen is removed? _____________ In which direction will the system shift when ammonia is added? _____________ In which direction will the system shift when the temperature is increased? _____________
For the endothermic reaction: 2 H2O(g) <--> 2 H2(g) + O2(g) indicate in which direction the...
For the endothermic reaction: 2 H2O(g) <--> 2 H2(g) + O2(g) indicate in which direction the equilibrium shifts when the following stresses are applied to the system or if there is no change in equilibrium. A. Hydrogen is added to the system. B. The partial pressure of water is increased. C. Oxygen is removed from the system. D. The temperature is increased. E. The volume of the container is decreased. F. A catalyst is added. G. Helium is added at...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. - Find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kJ/kg K) - A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? - Would your answer...
Consider the following reaction at equilibrium: C(s)+H2O(g)⇌CO(g)+H2(g) Predict whether the reaction will shift left, shift right,...
Consider the following reaction at equilibrium: C(s)+H2O(g)⇌CO(g)+H2(g) Predict whether the reaction will shift left, shift right, or remain unchanged upon each of the following disturbances. Part A C is added to the reaction mixture. -is added to the reaction mixture. -the reaction will shift left -the reaction will shift right -the reaction will remain unchanged Part B H2O is condensed and removed from the reaction mixture. -is condensed and removed from the reaction mixture. -the reaction will shift left -the...
Given the eqilibrium equation SO2Cl2(g) --> SO2(g)+Cl2(g) , with a heat of reaction of +67 kj,...
Given the eqilibrium equation SO2Cl2(g) --> SO2(g)+Cl2(g) , with a heat of reaction of +67 kj, the concentration of sulfur dioxide at equilibrium can be increased by: -Increasing the temperature -removing the SO2Cl2(g) -decreasing the volume of the reaction vessel If you could explain why the option is correct it would be much appreciated :)
Consider the following reaction at equilibrium. What effect will reducing the volume have on the system?...
Consider the following reaction at equilibrium. What effect will reducing the volume have on the system? C3H8(g) + 5 O2(g) ⇌ 3 CO2(g) + 4 H2O(l) ΔH° = -2220 kJ The reaction will shift to the left in the direction of reactants. The equilibrium constant will increase. No effect will be observed. The equilibrium constant will decrease. The reaction will shift to the right in the direction of products.