Question

applying Leonard Chateliers principal which direction will the equilibrium shift in the following reaction CH4 (g)...

applying Leonard Chateliers principal which direction will the equilibrium shift in the following reaction
CH4 (g) + 2O2 (g) = CO2 (g) + 802.3 kj

(a) if the temperature is increased
(b) if a catalyst is added
(c) if CH4 is added
(d) if the volume of the reaction vessel is decreased

Homework Answers

Answer #1

a) Increase in temperature in endothermic reactions favours backward or reverse direction that is towards reactants.

b) if catalyst is added there will be no change in equilibrium as the catalyst has no effect on reaction.

c) If CH4 is added, the equilibrium will move in forward direction in order to decrease the increased amount of CH4.

d) If the volume is decreased the pressure of the reaction vessel increases. As pressure is increased the equilibrium will move in that direction in which the number of moles of gaseous reactants are less.

In this reaction, the number of gaseous molecules on left side are 3 and on right side are 1 so the equilibrium will move in forward direction that is towards products.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the following reaction: heat + CaCO3(s) <----> CaO(s) + CO2(g) a. In which direction, if...
Given the following reaction: heat + CaCO3(s) <----> CaO(s) + CO2(g) a. In which direction, if any, will the equilibrium shift when the pressure of CO2 is increased? b. In which direction, if any, will the equilibrium shift if the temperature is decreased? c. In which direction, if any, will the equilibrium shift if the amount of CaCO3 is increased?
For the following reaction at equilibrium, select all of the stresses which will cause the reaction...
For the following reaction at equilibrium, select all of the stresses which will cause the reaction to shift to the right to re-establish equilibrium: CO(g) + 2H2(g) <--> CH3OH(g)    Change in Enthalpy = -18 kJ CO is added Hydrogen gas is removed Temperature is increased Volume of container is reduced A catalyst is added
For the endothermic reaction: 2 H2O(g) <--> 2 H2(g) + O2(g) indicate in which direction the...
For the endothermic reaction: 2 H2O(g) <--> 2 H2(g) + O2(g) indicate in which direction the equilibrium shifts when the following stresses are applied to the system or if there is no change in equilibrium. A. Hydrogen is added to the system. B. The partial pressure of water is increased. C. Oxygen is removed from the system. D. The temperature is increased. E. The volume of the container is decreased. F. A catalyst is added. G. Helium is added at...
Consider the following system at equilibrium CH4(g) + 2H2O(g) ↔ CO2(g) + 4H2(g). Suppose the concentration...
Consider the following system at equilibrium CH4(g) + 2H2O(g) ↔ CO2(g) + 4H2(g). Suppose the concentration of H2O is increased. (a) In which direction does the reaction shift to reestablish equilibrium? (b) What happens to the concentrations of CH4, CO2, and H2 as the reaction shifts to reestablish equilibrium?
In the Haber process shown below, predict the direction in which this exothermic reaction will shift...
In the Haber process shown below, predict the direction in which this exothermic reaction will shift when the system conditions are changed as follows: N2(g) + 3 H2(g)  2 NH3(g) A. The amount of N2(g) is increased Left No Change Right B. The amount of NH3(g) is decreased Left No Change Right C. The temperature is increased Left No Change Right D. The pressure is reduced Left No Change Right E. A catalyst is added Left No Change Right
Indicate which direction the reaction at equilibrium should shift under the given conditions for the reaction...
Indicate which direction the reaction at equilibrium should shift under the given conditions for the reaction of PCl3(g) + Cl2(g) ⇌ PCl5(g). addition of PCl3 addition of Cl2 addition of PCl5 removal of PCl3 removal of Cl2 removal of PCl5 decrease the volume of the container addition of Ne Indicate which direction the reaction at equilibrium should shift under the given conditions for the exothermic reaction of H2(g) + CO2(g) ⇌ H2O(g) + CO(g). addition of CO2 addition of H2O...
Write the equilibrium constant expression for the following reaction in the reverse direction: 2 CH4 (g)...
Write the equilibrium constant expression for the following reaction in the reverse direction: 2 CH4 (g) + 3 O2 (g) ⇌ 2 CO (g) + 4 H2O (g) a. K′c=[CO]2[H2O]4[CH4]2[O2]3 b. K′c=[CH4]2[O2]3[CO]2[H2O]4 c. K′c=2[CO]+4[H2O]2[CH4]+3[O2] d. K′c=2[CH4]+3[O2]2[CO]+4[H2O] Write the equilibrium constant expression for the following reaction in the reverse direction: 2 CH4(g) + 3 O2(g) ⇌ 2 CO(g) + 4 H2O(g) a. Kp′=2[PCH4]+3[PO2]2[PCO]+4[PH2O] b. Kp′=2[PCO]+4[PH2O]2[PCH4]+3[PO2] c. Kp′=[PCO]2[PH2O]4[PCH4]2[PO2]3 d. Kp′=[PCH4]2[PO2]3[PCO]2[PH2O]4 What is the equilibrium equation for the following reaction? C2H4 (g) +...
For the following reaction at equilibrium, which change would shift the position of equilibrium toward forming...
For the following reaction at equilibrium, which change would shift the position of equilibrium toward forming more products? (Select your answer(s) as there may be more than one.)2NOBr(g) 2NO(g) + Br2(g), ∆Hºrxn = +30 kJ/mol A)Decrease the total pressure by increasing the volume. B)Add NO. C)Remove Br2. D)Raise the temperature. E)Add NOBr
Determine the direction in which equilibrium will be shifted by the following changes. (Answers can be:...
Determine the direction in which equilibrium will be shifted by the following changes. (Answers can be: shift to products, shift to reactants, no change) N2(g) + 3H2(g) ⇌ 2NH3(g) (This reaction is exothermic and requires a catalyst to occur readily.) a. Increasing [N2]   ______________________________________________ b. Increasing pressure ______________________________________________ c. Decrease in temperature ______________________________________________
Refer to the reaction system C(s) + H2O(g) ↔ CO(g) + H2(g) at equilibrium for which...
Refer to the reaction system C(s) + H2O(g) ↔ CO(g) + H2(g) at equilibrium for which ΔH°rxn = +131 kJ. Assume ideal gas behavior. Predict the direction in which the above equilibrium will shift as a result of the stated change in conditions. a) An increase in the reaction temperature. b) A decrease in the amount of C(s). c) A decrease in the reactor volume. d) An increase in PH2O. e) Addition of N2 gas to the reaction mixture.