Question

Consider the formation of ammonia from nitrogen gas and hydrogen gas. Balance the equation below. [1]...

Consider the formation of ammonia from nitrogen gas and hydrogen gas. Balance the equation below.

[1] N2 +   [3] H2 → [2] NH3

If 5.07g of each reactant are used, what is the mass in grams of ammonia that will be produced?   ___ g
What is the percent yield for this reaction if 5.31g of ammonia are actually obtained?   ___ %

Homework Answers

Answer #1

weight of ammonia is 6.16g and percent yield is 86.02%

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) 1. How many molecules (not moles) of NH3 are produced from 5.25×10−4 g of H2 ?
Nitrogen gas and hydrogen gas react to form ammonia gas, NH3. If you reacted 10.0kg of...
Nitrogen gas and hydrogen gas react to form ammonia gas, NH3. If you reacted 10.0kg of nitrogen gas with an excess of hydrogen, how many grams of ammonia could be produced? If 10.5kg were actually produced in your experiment, calculate your percent yield.
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3...
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3 H2 (g) + N2 (g)  → 2 NH3 (g) For the reaction of 3.77 g of H2 with 8.66 g of N2, you determined that 21.2 g and 10.5 g of ammonia could be produced, respectively. In the laboratory, you reacted these masses of H2 and N2 and collected 7.70 g of NH3. What is the percentage yield of this reaction to the correct number...
In this reaction, nitrogen gas combines with hydrogen gas to yield ammonia. The enthalpy (ΔH) of...
In this reaction, nitrogen gas combines with hydrogen gas to yield ammonia. The enthalpy (ΔH) of this reaction is -92.22 kJ/mol.For this experiment, 17.15 grams of nitrogen gas and 10.95 grams of hydrogen gas are allowed to react in the reaction vessel. The ammonia vapor that is produced is then condensed, liquefied, and collected into a collection vessel. Write a balanced thermochemical equation with phase labels for the Haber process with the heat energy as part of the equation. What...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure. N2(g) + 3 H2(g) --> 2 NH3(g) How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2 (g) +3 H2 (g) -------------------> 2 NH3 (g) Assume 0.240 mol of N2 and 0.772 mol of H2 are present initially. 1) After complete reaction, how many moles of ammonia are produced? 2) How many moles of H2 remain? 3) How many moles of N2 remain? 4) What is the limiting reactant?
The reaction N2 + 3 H2----> 2 NH3 is used to produce ammonia. When 450.0 g...
The reaction N2 + 3 H2----> 2 NH3 is used to produce ammonia. When 450.0 g of hydrogen was reacted with nitrogen, the percent yield you achieved was 30.8%. What was the mass of ammonia produced?
The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process.                   N2(g) +...
The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process.                   N2(g) + 3 H2(g) ⇌ 2 NH3(g)                                 ΔH = -92.2 kJ How would a system initially at equilibrium respond in order to counteract each of the following changes? Answer with “runs to the right”, “shifts to the left”, or “no effect”. a) addition of hydrogen ______________________________________ b) removal of ammonia ______________________________________ c) increasing the pressure _____________________________________ d) increasing the temperature __________________________________ e) removal of...
100 g of nitrogen gas reacts with hydrogen gas to produce 40g of ammonia gas according...
100 g of nitrogen gas reacts with hydrogen gas to produce 40g of ammonia gas according to the equation given below: N2(g) + 3H2(g) ⇋ 2NH3(g) Calculate the percentage yield of ammonia
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT