Question

Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...

Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure.

N2(g) + 3 H2(g) --> 2 NH3(g)

How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?

Homework Answers

Answer #1


Molar mass of N2 = 28.02 g/mol


mass(N2)= 9.405 g

use:
number of mol of N2,
n = mass of N2/molar mass of N2
=(9.405 g)/(28.02 g/mol)
= 0.3357 mol

Molar mass of H2 = 2.016 g/mol


mass(H2)= 2.413 g

use:
number of mol of H2,
n = mass of H2/molar mass of H2
=(2.413 g)/(2.016 g/mol)
= 1.197 mol
Balanced chemical equation is:
N2 + 3 H2 ---> 2 NH3 +


1 mol of N2 reacts with 3 mol of H2
for 0.3357 mol of N2, 1.007 mol of H2 is required
But we have 1.197 mol of H2

so, N2 is limiting reagent
we will use N2 in further calculation


Molar mass of NH3,
MM = 1*MM(N) + 3*MM(H)
= 1*14.01 + 3*1.008
= 17.034 g/mol

According to balanced equation
mol of NH3 formed = (2/1)* moles of N2
= (2/1)*0.3357
= 0.6713 mol


use:
mass of NH3 = number of mol * molar mass
= 0.6713*17.03
= 11.4 g

Answer: 11.4 g

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ammonia is produced using the Haber process: 3 H2 + N2 → 2 NH3 What mass...
Ammonia is produced using the Haber process: 3 H2 + N2 → 2 NH3 What mass of NH3 could be produced if 12.5 g H2 reacts with excess nitrogen? 4.13g, 105g, 142g, 70.4g
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2 (g) +3 H2 (g) -------------------> 2 NH3 (g) Assume 0.240 mol of N2 and 0.772 mol of H2 are present initially. 1) After complete reaction, how many moles of ammonia are produced? 2) How many moles of H2 remain? 3) How many moles of N2 remain? 4) What is the limiting reactant?
The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process.                   N2(g) +...
The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process.                   N2(g) + 3 H2(g) ⇌ 2 NH3(g)                                 ΔH = -92.2 kJ How would a system initially at equilibrium respond in order to counteract each of the following changes? Answer with “runs to the right”, “shifts to the left”, or “no effect”. a) addition of hydrogen ______________________________________ b) removal of ammonia ______________________________________ c) increasing the pressure _____________________________________ d) increasing the temperature __________________________________ e) removal of...
Ammonia was formed at 450 ◦C by passing a mixture of nitrogen gas and hydrogen gas...
Ammonia was formed at 450 ◦C by passing a mixture of nitrogen gas and hydrogen gas at a 1 : 3 mole ratio over a catalyst. When the total pressure was held constant at 10.13 bar it was found that the product gas contained 2.04% by volume of ammonia. For the reaction (1/2)N2(g) +(3/2)H2(g) <----> NH3(g) calculate the value of the equilibrium constant K at 450 ◦C.
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3...
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3 H2 (g) + N2 (g)  → 2 NH3 (g) For the reaction of 3.77 g of H2 with 8.66 g of N2, you determined that 21.2 g and 10.5 g of ammonia could be produced, respectively. In the laboratory, you reacted these masses of H2 and N2 and collected 7.70 g of NH3. What is the percentage yield of this reaction to the correct number...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation: 3 H2 (g) + N2 (g) → 2 NH3 (g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. What is the maximum theoretical yield in grams if...
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g)...
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g) ΔG° at 298 K for this reaction is -33.3 kJ/mol. The value of ΔG at 298 K for a reaction mixture that consists of 1.7 atm N2, 3.2 atm H2, and 0.85 atm NH3 is a) -139.6 b) 0.43 c) -4.63 × 103 d) -44.1 e) -1.08 × 104
Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce...
Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce ammonia. N2(g)+3H2(g)⟶2NH3(g) Assume 0.230 mol N2 and 0.758 mol H2 are present initially.PLEASE SHOW steps!! 1)After complete reaction, how many moles of ammonia NH3 are produced? 2)How many moles of H2 remain? 3)How many moles of N2 remain? 4)What is the limiting reactant? nitrogen or hydrogen
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.60 g H2 is allowed to react with 10.3 g N2, producing 2.24 g NH3. Part A) What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT