Question

The reaction N2 + 3 H2----> 2 NH3 is used to produce ammonia. When 450.0 g...

The reaction N2 + 3 H2----> 2 NH3 is used to produce ammonia. When 450.0 g of hydrogen was reacted with nitrogen, the percent yield you achieved was 30.8%. What was the mass of ammonia produced?

Homework Answers

Answer #1

Molar mass of H2 = 2.016 g/mol

mass of H2 = 450 g

mol of H2 = (mass)/(molar mass)

= 450/2.016

= 223.2143 mol

From balanced chemical reaction, we see that

when 3 mol of H2 reacts, 2 mol of NH3 is formed

mol of NH3 formed = (2/3)* moles of H2

= (2/3)*223.2143

= 148.8095 mol

Molar mass of NH3 = 1*MM(N) + 3*MM(H)

= 1*14.01 + 3*1.008

= 17.034 g/mol

mass of NH3 = number of mol * molar mass

= 148.8095*17.034

= 2534.8214 g

% yield = actual mass*100/theoretical mass

30.8= actual mass*100/2534.8214

actual mass= 781 g

Answer: 781 g

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3...
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3 H2 (g) + N2 (g)  → 2 NH3 (g) For the reaction of 3.77 g of H2 with 8.66 g of N2, you determined that 21.2 g and 10.5 g of ammonia could be produced, respectively. In the laboratory, you reacted these masses of H2 and N2 and collected 7.70 g of NH3. What is the percentage yield of this reaction to the correct number...
Ammonia equilibrium N2 (g) + 3 H2 (g) <-> 2 NH3 (g) is at equilibrium when...
Ammonia equilibrium N2 (g) + 3 H2 (g) <-> 2 NH3 (g) is at equilibrium when additional nitrogen is added under specific conditions, where T and P held constant, further dissociation of ammonia occurs A) Explain why. B) What conditions are needed? C) Why would adding more H2 produce the same result? This is Physical Chemistry homework. Thank you!
Ammonia is produced using the Haber process: 3 H2 + N2 → 2 NH3 What mass...
Ammonia is produced using the Haber process: 3 H2 + N2 → 2 NH3 What mass of NH3 could be produced if 12.5 g H2 reacts with excess nitrogen? 4.13g, 105g, 142g, 70.4g
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure. N2(g) + 3 H2(g) --> 2 NH3(g) How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
Use the balanced equation for the exothermic reaction, N2 (g) + 3 H2 (g)----->2 NH3 (g),...
Use the balanced equation for the exothermic reaction, N2 (g) + 3 H2 (g)----->2 NH3 (g), to answer the 4 questions below. In which direction will the system shift when hydrogen is added? _____________ In which direction will the system shift when nitrogen is removed? _____________ In which direction will the system shift when ammonia is added? _____________ In which direction will the system shift when the temperature is increased? _____________
(a) Write a stoichiometric table for the reaction N2 + 3 H2  2 NH3 for...
(a) Write a stoichiometric table for the reaction N2 + 3 H2  2 NH3 for an isothermal, isobaric flow system with equimolar (or equal molar) feeds of N2 & H2. (b) If the entering total pressure is 16.4 atm and the entering temperature is 1727 oC, calculate the concentration of hydrogen and nitrogen entering the reactor. (c) Plot the gas composition (molar fractions) as a function of the conversion. Is there anything worth noticing? Can you explain it? What...
Consider the formation of ammonia from nitrogen gas and hydrogen gas. Balance the equation below. [1]...
Consider the formation of ammonia from nitrogen gas and hydrogen gas. Balance the equation below. [1] N2 +   [3] H2 → [2] NH3 If 5.07g of each reactant are used, what is the mass in grams of ammonia that will be produced?   ___ g What is the percent yield for this reaction if 5.31g of ammonia are actually obtained?   ___ %
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) 1. How many molecules (not moles) of NH3 are produced from 5.25×10−4 g of H2 ?
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2 (g) +3 H2 (g) -------------------> 2 NH3 (g) Assume 0.240 mol of N2 and 0.772 mol of H2 are present initially. 1) After complete reaction, how many moles of ammonia are produced? 2) How many moles of H2 remain? 3) How many moles of N2 remain? 4) What is the limiting reactant?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT