Question

An 8.5-g ice cube is placed into 255 g of water. Develop an equation that can...

An 8.5-g ice cube is placed into 255 g of water. Develop an equation that can be used to calculate the temperature change in the water upon the complete melting of the ice given an initial temperature of T. Assume that all of the energy required to melt the ice comes from the water.

Homework Answers

Answer #1

an equation that can be used to calculate the temperature change in the water upon the complete melting of the ice given an initial temperature of T is as follows:

heat to melt ice:

Q= m ice [C ice (T2-T1) + dH fuseion]

Here m ice = mass of ice

Cice = specific heat of ice

T2= Final tem

T1= initial tem

dH = heat of fusion

heat coming from water

Q= m water * C water (T2-T1)

Here m water = mass of water

Cwater = specific heat of water

T2= Final tem

T1= initial tem

Hence all the heat to melt ice will come from water, then we can write as follows:

m water * C water (T2-T1) = m ice [C ice (T2-T1) + dH fuseion]

(T2-T1) = m ice [C ice (T2-T1) + dH fuseion]/ m water * C water

Or temperature change dT == m ice [C ice (T2-T1) + dH fuseion]/ m water * C water

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two 20.0-g ice cubes at –20.0 °C are placed into 255 g of water at 25.0...
Two 20.0-g ice cubes at –20.0 °C are placed into 255 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –11.0 °C are placed into 255 g of water at 25.0...
Two 20.0-g ice cubes at –11.0 °C are placed into 255 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature...
A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature is 14.0 degrees C. Calculate the change in entropy (in joules/Kelvin) of the system as the ice cube comes to thermal equilibrium with the lake. (c for water = 4186 J/kg-K)
1. A student drops an ice cube into an insulated flask full of water and waits...
1. A student drops an ice cube into an insulated flask full of water and waits for the ice cube to completely melt. The ice cube initially has a mass of 120 g and a temperature of 0°C. The water (before the ice cube is added) has a mass of 2.00 kg and an initial temperature of 75°C. What is the final temperature (in °C) of the mixture? (Assume no energy is lost to the walls of the flask, or...
A cube of ice is taken from the freezer at -8.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -8.5 ∘C and placed in a 85-g aluminum calorimeter filled with 320 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 15.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. What was the...
A 80 g ice cube at -53°C is placed in a lake whose temperature is 44°C....
A 80 g ice cube at -53°C is placed in a lake whose temperature is 44°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
A 49 g ice cube at -69°C is placed in a lake whose temperature is 32°C....
A 49 g ice cube at -69°C is placed in a lake whose temperature is 32°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
A 49 g ice cube at -37°C is placed in a lake whose temperature is 77°C....
A 49 g ice cube at -37°C is placed in a lake whose temperature is 77°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
A cube of ice is taken from the freezer at -8.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -8.5 ∘C and placed in a 85-g aluminum calorimeter filled with 320 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 15.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg.
You drop a large ice cube of mass mc = 200g at an initial temperature of...
You drop a large ice cube of mass mc = 200g at an initial temperature of Tc = -4 degreesC into mw = 200g of water at Tw = 14 degreesC. (a) Find the heat lost by the water if it is cooled to exactly T = 0 degreesC. (b) Find the heat required to raise the temperature of the ice cube to it's melting point. Assume cice = 2100J=kgCdegrees (c) With the additional energy, find how much ice is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT