Question

A 49 g ice cube at -69°C is placed in a lake whose temperature is 32°C....

A 49 g ice cube at -69°C is placed in a lake whose temperature is 32°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 49 g ice cube at -37°C is placed in a lake whose temperature is 77°C....
A 49 g ice cube at -37°C is placed in a lake whose temperature is 77°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
A 80 g ice cube at -53°C is placed in a lake whose temperature is 44°C....
A 80 g ice cube at -53°C is placed in a lake whose temperature is 44°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature...
A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature is 14.0 degrees C. Calculate the change in entropy (in joules/Kelvin) of the system as the ice cube comes to thermal equilibrium with the lake. (c for water = 4186 J/kg-K)
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of...
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of water in a thermally insulated container. If the water is initially at 20°C, and the ice comes directly from a freezer at -11°C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? The specific heat of water is 4186 J/kg·K. The specific heat of ice is 2220 J/kg·K. The latent heat of...
A 41.0-g block of copper whose temperature is 580. K is placed in an insulating box...
A 41.0-g block of copper whose temperature is 580. K is placed in an insulating box with a 95.0-g block of lead whose temperature is 170. K. The specific heat of copper is 386 J/(kg·K), and the specific heat of lead is 128 J/(kg·K). What is the equilibrium temperature of the two-block system? Give your answer in K and do not enter units. What is the change in the internal energy of the system between the initial state and the...
A 41.6 g block of copper whose temperature is 372 K is placed in an insulating...
A 41.6 g block of copper whose temperature is 372 K is placed in an insulating box with a 59.3 g block of lead whose temperature is 146 K. (a) What is the equilibrium temperature of the two-block system? (b) What is the change in the internal energy of the two-block system between the initial state and the equilibrium state? (c)What is the change in the entropy of the two-block system? The heat capacities of copper and lead are 386...
A 16.2 g block of copper whose temperature is 417 K is placed in an insulating...
A 16.2 g block of copper whose temperature is 417 K is placed in an insulating box with a 122 g block of lead whose temperature is 103 K. (a) What is the equilibrium temperature of the two-block system? (b) What is the change in the internal energy of the two-block system between the initial state and the equilibrium state? (c) What is the change in the entropy of the two-block system? The heat capacities of copper and lead are...
A 40.5 g block of copper whose temperature is 494 K is placed in an insulating...
A 40.5 g block of copper whose temperature is 494 K is placed in an insulating box with a 76.9 g block of lead whose temperature is 228 K. (a) What is the equilibrium temperature of the two-block system? (b) What is the change in the internal energy of the two-block system between the initial state and the equilibrium state? (c) What is the change in the entropy of the two-block system? The heat capacities of copper and lead are...
A 44.2 g block of copper whose temperature is 368 K is placed in an insulating...
A 44.2 g block of copper whose temperature is 368 K is placed in an insulating box with a 143 g block of lead whose temperature is 268 K. (a) What is the equilibrium temperature of the two-block system? (b) What is the change in the internal energy of the two-block system between the initial state and the equilibrium state? (c) What is the change in the entropy of the two-block system? The heat capacities of copper and lead are...
A 400 g ice cube at -20 ?C is placed in an aluminum cup whose initial...
A 400 g ice cube at -20 ?C is placed in an aluminum cup whose initial temperature is 80 ?C . The system comes to an equilibrium temperature of 20 ?C . What is the mass of the cup? Express your answer with the appropriate units.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT