Question

An electron in a carbon nanotube of length "L" is described by the wavefunction psi(x)= sqrt(2/L)*sin(pix/L)....

An electron in a carbon nanotube of length "L" is described by the wavefunction psi(x)= sqrt(2/L)*sin(pix/L). Compute the expectation value of the kinetic energy of the electron.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x ≤ ∞. a) Draw this wavefunction, labeling the axes in terms of A and L. b) Find the relationship between A and L that satisfies the normalization condition. c) Calculate the approximate probability of finding the particle between positions x = −L and x = L. d) What are 〈x〉, 〈x^2〉, and σ_x ? (Hint: use shortcuts where possible). e) Find the minimum uncertainty...
Assume the wavefunction Ψ(x)=Axe^(-bx^2) is a solution to Schrodinger’s equation for an electron in some potential...
Assume the wavefunction Ψ(x)=Axe^(-bx^2) is a solution to Schrodinger’s equation for an electron in some potential U(x) over the range -∞<x< ∞. A) Write an expression which would enable you to find the value of the constant A in terms of the constant b. B) What is (x)_avg, the average value of x? C) Write an expression which would enable you to find (x^2)_avg, the average value of x^2 in terms of the constant b. D) Write an expression which...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...
7. A particle of mass m is described by the wave function ψ ( x) =...
7. A particle of mass m is described by the wave function ψ ( x) = 2a^(3/2)*xe^(−ax) when x ≥ 0 0 when x < 0 (a) (2 pts) Verify that the normalization constant is correct. (b) (3 pts) Sketch the wavefunction. Is it smooth at x = 0? (c) (2 pts) Find the particle’s most probable position. (d) (3 pts) What is the probability that the particle would be found in the region (0, 1/a)? 8. Refer to the...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where x and y are given in cm and time t is given in s. Answer the following questions a) Find the two simplest travelling waves which form the above standing wave b) Find the amplitude, wave number, frequency, period and speed of each wave(Include unit in the answer) c) When the length of the string is 12 cm, calculate the distance between the nodes...