Question

Assume the wavefunction Ψ(x)=Axe^(-bx^2) is a solution to Schrodinger’s equation for an electron in some potential...

Assume the wavefunction Ψ(x)=Axe^(-bx^2) is a solution to Schrodinger’s equation for an electron in some potential U(x) over the range -∞<x< ∞.

A) Write an expression which would enable you to find the value of the constant A in terms of the constant b.

B) What is (x)_avg, the average value of x?

C) Write an expression which would enable you to find (x^2)_avg, the average value of x^2 in terms of the constant b.

D) Write an expression which would determine the probability of finding the electron in a region of space - Δx<x< Δx in terms of the constant b.

E) Determine the potential energy U(x) and the energy E associated with Ψ(x) in terms of the constant b and other fundamental constants.

F) Determine the position uncertainty Δx for this electron in terms of the constant b.

G) Determine the probability of finding the electron in a region of space - Δx<x< Δx in terms of the constant b.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x ≤ ∞. a) Draw this wavefunction, labeling the axes in terms of A and L. b) Find the relationship between A and L that satisfies the normalization condition. c) Calculate the approximate probability of finding the particle between positions x = −L and x = L. d) What are 〈x〉, 〈x^2〉, and σ_x ? (Hint: use shortcuts where possible). e) Find the minimum uncertainty...
7. A particle of mass m is described by the wave function ψ ( x) =...
7. A particle of mass m is described by the wave function ψ ( x) = 2a^(3/2)*xe^(−ax) when x ≥ 0 0 when x < 0 (a) (2 pts) Verify that the normalization constant is correct. (b) (3 pts) Sketch the wavefunction. Is it smooth at x = 0? (c) (2 pts) Find the particle’s most probable position. (d) (3 pts) What is the probability that the particle would be found in the region (0, 1/a)? 8. Refer to the...
            An electron is confined between x = 0 and x = L. The wave function...
            An electron is confined between x = 0 and x = L. The wave function of the electron is ψ(x) = A sin(2πx/L). The wave function is zero for the regions x < 0 and x > L. (a) Determine the normalization constant A. (b) What is the probability of finding the electron in the region 0 ≤ x ≤ L/8? { (2/L)1/2, 4.54%}
Consider the Schrodinger equation and its solution for the hydrogen atom. a) Write an equation that...
Consider the Schrodinger equation and its solution for the hydrogen atom. a) Write an equation that would allow you to calculate, from the wavefunction, the radius of a sphere around the hydrogen nucleus within which there is a 90% probability of finding the electron. What is the radius of the same sphere if I want a 100% probability of finding the electron? b) Calculate the shortest wavelength (in nm) for an electronic transition. In what region of the spectrum is...
Particles of mass m are incident from the positive x axis (moving to the left) onto...
Particles of mass m are incident from the positive x axis (moving to the left) onto a potential energy step at x=0. At the step the potential energy drops from the positive value U_0 for all x>0 to the value 0 for all x<0. The energy of the particles is greater than U_0. A) Sketch the potential energy U(x) for this system. B) How would the wavelength of a particle change in the x<0 region compared to the x>0 region?...
An electron (a spin-1/2 particle) sits in a uniform magnetic field pointed in the x-direction: B...
An electron (a spin-1/2 particle) sits in a uniform magnetic field pointed in the x-direction: B = B0xˆ. a) What is the quantum Hamiltonian for this electron? Express your answer in terms of B0, other constants, and the spin operators Sx, Sy and Sz, and then also write it as a matrix (in z basis). b) What are the energy eigenvalues, and what are the associated normalized eigenvectors (in terms of our usual basis)? You may express the eigenvectors either...
Particles with energy E, are incident from the left, on the step-potential of height V0 =...
Particles with energy E, are incident from the left, on the step-potential of height V0 = 2E as shown: a. What are the wave numbers in the two regions, 1 k and 2 k , in terms of E? b. Write down the most general solutions for the Schrodinger Equation in both regions? Identify, with justification, if any of the coefficients are zero. c. Write down the equations that result for applying the boundary conditions for the wave functions at...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
2 Equipartition The laws of statistical mechanics lead to a surprising, simple, and useful result —...
2 Equipartition The laws of statistical mechanics lead to a surprising, simple, and useful result — the Equipartition Theorem. In thermal equilibrium, the average energy of every degree of freedom is the same: hEi = 1 /2 kBT. A degree of freedom is a way in which the system can move or store energy. (In this expression and what follows, h· · ·i means the average of the quantity in brackets.) One consequence of this is the physicists’ form of...
Question 1 2 pts Let x represent the height of first graders in a class. This...
Question 1 2 pts Let x represent the height of first graders in a class. This would be considered what type of variable: Nonsensical Lagging Continuous Discrete Flag this Question Question 2 2 pts Let x represent the height of corn in Oklahoma. This would be considered what type of variable: Discrete Inferential Distributed Continuous Flag this Question Question 3 2 pts Consider the following table. Age Group Frequency 18-29 9831 30-39 7845 40-49 6869 50-59 6323 60-69 5410 70...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT