Question

A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where...

A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where x and y are given in cm and time t is given in s. Answer the following questions
a) Find the two simplest travelling waves which form the above standing wave
b) Find the amplitude, wave number, frequency, period and speed of each wave(Include unit in the answer)
c) When the length of the string is 12 cm, calculate the distance between the nodes of this standing wave and draw the shape of the standing wave using y-x plane(give all the details in the drawn figure)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t...
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t /.1 s)) where x is in meters and t is in seconds. a. Is the wave travelling to the right or to the left? _________ b. What is the wave frequency? __________ c. What is the wavelength? ___________ d. What is the wave speed? _________ e. At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A string oscillates according to the equation y´ = (0.370 cm) sin[(π/3.0 cm-1)x] cos[(45.4 π s-1)t]....
A string oscillates according to the equation y´ = (0.370 cm) sin[(π/3.0 cm-1)x] cos[(45.4 π s-1)t]. What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position x = 1.72 cm when t = 1.12 s?
A string oscillates according to the equation y´ = (0.275 cm) sin[(π/2.0 cm-1)x] cos[(39.6 π s-1)t]....
A string oscillates according to the equation y´ = (0.275 cm) sin[(π/2.0 cm-1)x] cos[(39.6 π s-1)t]. What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position x = 1.60 cm when t = 1.03 s?
A string oscillates according to the equation y´ = (0.369 cm) sin[(π/3.0 cm-1)x] cos[(57.6 π s-1)t]....
A string oscillates according to the equation y´ = (0.369 cm) sin[(π/3.0 cm-1)x] cos[(57.6 π s-1)t]. What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position x = 1.50 cm when t = 1.30 s?
The second harmonic standing wave on a particular string fixed at both ends is given by:...
The second harmonic standing wave on a particular string fixed at both ends is given by: y(x, t) = 0.01 sin(2π x) cos(200π t) (in SI units). a) Fill in the following information: λ2 = f2 = v = b) How long is the string, and what is its fundamental frequency? L =   f1 = c) This second harmonic wave has total energy E2. If the string is plucked so that has the first harmonic wave on it instead at...
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and...
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and ‘y’ are in meters and ‘t’ is in seconds.(a). Find the transverse velocity and transverse acceleration expression. (b).Determine the amplitude , angular frequency, angular wave number, wavelength, wave speed and direction of the motion.?
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is...
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is in meters and t is in seconds. Is the wave travelling to the right or to the left? _________ What is the wave speed? _________ What is the wave frequency? __________ What is the wavelength? ___________ At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747...
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747 rad/m)[x − (69.8 m/s)t]}. Find the wavelength of this wave. in m Find the frequency of this wave. in Hz Find the amplitude of this wave in mm Find the speed of motion of the wave in m/s Find the direction of motion of the wave. Express your answer as "+x" or "-x".
Two waves in one string are described by the wave functions y1= (6 cm)sin (5x- 1.6t)...
Two waves in one string are described by the wave functions y1= (6 cm)sin (5x- 1.6t) and y2 = (6 cm) sin (5x +1.6t+π/2). Find the superposition of waves and name of the resultant wave. Also determine the wave speed, amplitude of the reusltant wave.
A wave on a string is described by the equation y = 12 cos(1.57 x -...
A wave on a string is described by the equation y = 12 cos(1.57 x - 6.28 t). The lengths are measured in cm and time in s. Determine; (a) the amplitude, frequency, and the time it takes for the wave repeats itself, (b) the speed of the wave and the distance a peak of the wave travels in 3 T + .5 s. (c) Paint a point on this string. What length does this point move in 2.5 s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT