Question

A 3.98 g sample of solid NaBr (s) is dissolved in 361 mL of water in...

A 3.98 g sample of solid NaBr (s) is dissolved in 361 mL of water in a coffee cup calorimeter. Once all of the NaBr (s) is dissolved in the water, the final temperature of the solution is found to be 30.04°C. If the initial temperature of the water in the calorimeter was 21.84 °C, calculate the calorimeter constant (in J/K) for the coffee cup calorimeter.

The heat of solvation of NaBr (s) is -0.60 kJ/mol.

Homework Answers

Answer #1

Here is the solution of your question. If you have any doubt or need any clarification please comment in comment box and will definitely resolve your query. If you find useful please upvote it. Thanks in advance.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 5.80 g sample of solid NH4Br (s) is dissolved in 117 mL of water in...
A 5.80 g sample of solid NH4Br (s) is dissolved in 117 mL of water in a coffee cup calorimeter. Once all of the NH4Br (s) is dissolved in the water, the final temperature of the solution is found to be 6.73°C. If the initial temperature of the water in the calorimeter was 21.63 °C, calculate the calorimeter constant (in J/K) for the coffee cup calorimeter. Report your answer to three significant figures. The heat of solvation of NH4Br (s)...
A 3.56 g sample of solid NH4C2H3O2 (s) is dissolved in 418 mL of water in...
A 3.56 g sample of solid NH4C2H3O2 (s) is dissolved in 418 mL of water in a coffee cup calorimeter. Once all of the NH4C2H3O2 (s) is dissolved in the water, the final temperature of the solution is found to be 24.81°C. If the initial temperature of the water in the calorimeter was 20.81 °C, calculate the calorimeter constant (in J/K) for the coffee cup calorimeter. Report your answer to three significant figures. The heat of solvation of NH4C2H3O2 (s)...
Using the following thermal chemical data (use Hess’s law) 2Fe(s) + 6HF(g) —> 2FeF3(s) + 3H2(g)...
Using the following thermal chemical data (use Hess’s law) 2Fe(s) + 6HF(g) —> 2FeF3(s) + 3H2(g)    ?rH•= -1787.4 kJ/mol 2Fe(s) + 6HCl(g) —> 2FeCl3(s) + 3H2(g) ?rH•= -1457.0 kJ/mol calculate?rH• for the following reaction: FeCl3(s) + 3HF(g) —> FeF3(s) + 3HCl(g) 2. when 19.86g NaOH is dissolved in 125 mL of water in the coffee-cup calorimeter, the temperature rises from 23•C to 65•C. what is the enthalpy change per mole of the hydroxide dissolved in the water? Assume that...
When a 5.93-g sample of solid sodium hydroxide dissolves in 39.8 g of water in a...
When a 5.93-g sample of solid sodium hydroxide dissolves in 39.8 g of water in a coffee-cup calorimeter (see above figure) the temperature rises from 22.00 oC to 56.12 oC. Calculate H in kJ/mol NaOH for the solution process. NaOH(s) Na+(aq) + OH-(aq) The specific heat of water is 4.18 J/g-K.
When a 3.81-g sample of solid ammonium chloride dissolves in 57.9 g of water in a...
When a 3.81-g sample of solid ammonium chloride dissolves in 57.9 g of water in a coffee-cup calorimeter (see above figure) the temperature falls from 24.00 oC to 19.94 oC. Calculate H in kJ/mol NH4Cl for the solution process. NH4Cl(s) NH4+(aq) + Cl-(aq) The specific heat of water is 4.18 J/g-K.
In the following experiment, a coffee-cup calorimeter containing 100. mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100. mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 2.00 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution, ΔHsoln, of CaCl2 is −82.8 kJ/mol. The specific heat of water is CS=4.184 J/(g−K
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 4.13 g of CuCl2(s) are dissolved in 111.70 g of water, the temperature of the solution increases from 25.33 to 28.58 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.89 J/°C....
A 9.07-g sample of NaOH is dissolved in 104.9 g of water in a coffee cup...
A 9.07-g sample of NaOH is dissolved in 104.9 g of water in a coffee cup calorimeter. The temperature of the solution rises from 15.49°C to 23.76°C. Calculate ∆Hrxn, in kJ for the dissociation of NaOH in water Assume that the heat capacity for the solution is 4.18 J/g°C.
1. When a solid dissolves in water, heat may be evolved or absorbed. The heat of...
1. When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 6.20 g of CsClO4(s) are dissolved in 115.60 g of water, the temperature of the solution drops from 22.87 to 19.50 °C. Based on the student's observation, calculate the enthalpy of dissolution of CsClO4(s) in kJ/mol. Assume the specific heat of the solution is...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 18.53 g of Cs2SO4(s) are dissolved in 100.40 g of water, the temperature of the solution drops from 25.54 to 22.92 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.85 J/°C....