Question

When a 3.81-g sample of solid ammonium chloride dissolves in 57.9 g of water in a...

When a 3.81-g sample of solid ammonium chloride dissolves in 57.9 g of water in a coffee-cup calorimeter (see above figure) the temperature falls from 24.00 oC to 19.94 oC. Calculate H in kJ/mol NH4Cl for the solution process. NH4Cl(s) NH4+(aq) + Cl-(aq) The specific heat of water is 4.18 J/g-K.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When a 5.93-g sample of solid sodium hydroxide dissolves in 39.8 g of water in a...
When a 5.93-g sample of solid sodium hydroxide dissolves in 39.8 g of water in a coffee-cup calorimeter (see above figure) the temperature rises from 22.00 oC to 56.12 oC. Calculate H in kJ/mol NaOH for the solution process. NaOH(s) Na+(aq) + OH-(aq) The specific heat of water is 4.18 J/g-K.
When a 4.00-g sample of solid ammonium nitrate dissolves in 60.0 g of water in a...
When a 4.00-g sample of solid ammonium nitrate dissolves in 60.0 g of water in a coffee-cup calorimeter (see figure below), the temperature drops from 23.0°C to 16.4°C. Calculate ΔH (in kJ/mol NH4NO3) for the solution process shown below. Assume that the specific heat of the solution is the same as that of pure water. Hint: this process occurs at constant pressure.
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g),...
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g), also at 24.2 degree celsius, is added to the water, and after the ammonium nitrate dissolves, the final temperature is 18.3 degrees celsius.What is the heat of solution of ammonium nitrate in kj/mol? Assume that the specific heat capacity of the solution is 4.18 J/Cg and that no heat is transferred to the surrounds or to the calorimeter.
When 3.02 g NH4Cl solid was dissolved in 20.05 mL of water, the resulting 23.07 g...
When 3.02 g NH4Cl solid was dissolved in 20.05 mL of water, the resulting 23.07 g solution temperature decreased from 19.80 oC to 11.25 oC. Calculate the enthalpy change ?H in kJ, when 1 mol of NH4Cl dissolves in water. The specific heat of the solution is 4.18 J/g oC.
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 4.13 g of CuCl2(s) are dissolved in 111.70 g of water, the temperature of the solution increases from 25.33 to 28.58 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.89 J/°C....
1. When a solid dissolves in water, heat may be evolved or absorbed. The heat of...
1. When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 6.20 g of CsClO4(s) are dissolved in 115.60 g of water, the temperature of the solution drops from 22.87 to 19.50 °C. Based on the student's observation, calculate the enthalpy of dissolution of CsClO4(s) in kJ/mol. Assume the specific heat of the solution is...
Calorimetry Problem: Show your work neatly and methodically. Include the sign associated with ΔH. 1. When...
Calorimetry Problem: Show your work neatly and methodically. Include the sign associated with ΔH. 1. When a 6.55 gram sample of solid sodium hydroxide dissolves in 115.00 grams of water in a coffee-cup calorimeter, the temperature rises from 21.6°C to 38.7°C. Calculate ΔH, in kJ/mole NaOH, for the solution process. NaOH(s)  Na1+(aq) + OH1- (aq) The specific heat of the solution is 4.18 J/g °C. 3. 2, A 2.600 gram sample of phenol, C6H5OH, was burned in a bomb...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 18.53 g of Cs2SO4(s) are dissolved in 100.40 g of water, the temperature of the solution drops from 25.54 to 22.92 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.85 J/°C....
When a solid dissolves in water, the solution may become hotter or colder. The dissolution enthalpy...
When a solid dissolves in water, the solution may become hotter or colder. The dissolution enthalpy (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 10.13 g K2SO4(s) is dissolved in 114.80 g water, the temperature of the solution drops from 24.11 to 20.86 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.77 J/°C. Based on...
A 3.98 g sample of solid NaBr (s) is dissolved in 361 mL of water in...
A 3.98 g sample of solid NaBr (s) is dissolved in 361 mL of water in a coffee cup calorimeter. Once all of the NaBr (s) is dissolved in the water, the final temperature of the solution is found to be 30.04°C. If the initial temperature of the water in the calorimeter was 21.84 °C, calculate the calorimeter constant (in J/K) for the coffee cup calorimeter. The heat of solvation of NaBr (s) is -0.60 kJ/mol.