Question

The decomposition of ammonia on a tungsten surface at 1100 °C NH31/2 N2 + 3/2 H2...

The decomposition of ammonia on a tungsten surface at 1100 °C NH31/2 N2 + 3/2 H2 is zero order in NH3 with a rate constant of 3.40×10-6 M s-1. If the initial concentration of NH3 is 6.24×10-3 M, the concentration of NH3 will be M after 1.34×103 seconds have passed.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The decomposition of ammonia on a platinum surface at 1129 K occurs according to the following...
The decomposition of ammonia on a platinum surface at 1129 K occurs according to the following reaction: 2 NH3(g) --> N2(g) + 3 H2(g). It occurs via zero order kinetics. Use the following kinetic data which report the variation of ammonia concentration in the gas phase with time "t" to evaluate the rate constant for the reaction at 1129 K. 103[NH3] (in M) 2.10 1.85 1.47 1.23 .86 .57 .34 t/s 0 200 400 600 800 1000 1200 Suggest why...
In a study of the decomposition of ammonia on a platinum surface at 856 °C NH3...
In a study of the decomposition of ammonia on a platinum surface at 856 °C NH3 1/2 N2 + 3/2 H2 the following data were obtained: [NH3], M 2.45E-3 1.23E-3 6.15E-4 3.08E-4 seconds 0 998 1.50E3 1.75E3 Hint: It is not necessary to graph these data. (1) The observed half life for this reaction when the starting concentration is 2.45E-3 M is s and when the starting concentration is 1.23E-3 M is s. (2) The average rate of disappearance of...
1) The decomposition of hydrogen peroxide in dilute sodium hydroxide at 20 °C H2O2(aq)H2O(l) + ½...
1) The decomposition of hydrogen peroxide in dilute sodium hydroxide at 20 °C H2O2(aq)H2O(l) + ½ O2(g) is first order in H2O2 with a rate constant of 1.10×10-3 min-1. If the initial concentration of H2O2 is 9.20×10-2 M, the concentration of H2O2 will be 1.83×10-2 M after____________ min have passed. 2) The gas phase decomposition of dimethyl ether at 500 °C CH3OCH3(g) CH4(g) + H2(g) + CO(g) is first order in CH3OCH3 with a rate constant of 4.00×10-4 s-1. If...
2. At 450°C, ammonia gas will decompose according to the following equation: 2 NH3 (g) ...
2. At 450°C, ammonia gas will decompose according to the following equation: 2 NH3 (g)  N2 (g) + 3 H2 (g) Kc = 4.50 at 475˚C An unknown quantity of NH3 is placed in a reaction flask (with no N2 or H2) and is allowed to come to equilibrium at 475°C. The equilibrium concentration of H2 is then determined to be 0.252 M. Determine the initial concentration of NH3 placed in the flask
A: 2 NH3 (g) + 46 kJ <-> N2 (g) + 3 H2 (g) For the...
A: 2 NH3 (g) + 46 kJ <-> N2 (g) + 3 H2 (g) For the reaction at equilibrium given above, give 2 ways that you can shift the equibrium to the left. B: 2 NH3(g) + 46 kJ <-> N2(g) + 3 H2(g) For the reaction at equilbrium given above, calculate the numeric value of Kc if the concentrations at equilibrium are 0.50 M NH3(g) , 0.44 M N2(g), and 0.20 M H2(g). C: 2 NH3(g) + 46 kJ...
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g)...
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of N2O5 is 0.105 M, the concentration of N2O5 will be  Mafter 391 s have passed. 2) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of...
Ammonia is produced using the Haber process: 3 H2 + N2 → 2 NH3 What mass...
Ammonia is produced using the Haber process: 3 H2 + N2 → 2 NH3 What mass of NH3 could be produced if 12.5 g H2 reacts with excess nitrogen? 4.13g, 105g, 142g, 70.4g
Ammonia equilibrium N2 (g) + 3 H2 (g) <-> 2 NH3 (g) is at equilibrium when...
Ammonia equilibrium N2 (g) + 3 H2 (g) <-> 2 NH3 (g) is at equilibrium when additional nitrogen is added under specific conditions, where T and P held constant, further dissociation of ammonia occurs A) Explain why. B) What conditions are needed? C) Why would adding more H2 produce the same result? This is Physical Chemistry homework. Thank you!
The reaction N2 + 3 H2----> 2 NH3 is used to produce ammonia. When 450.0 g...
The reaction N2 + 3 H2----> 2 NH3 is used to produce ammonia. When 450.0 g of hydrogen was reacted with nitrogen, the percent yield you achieved was 30.8%. What was the mass of ammonia produced?
Ammonia gas is synthesized according to the balanced equation below. N2(g) + 3 H2(g) -> 2...
Ammonia gas is synthesized according to the balanced equation below. N2(g) + 3 H2(g) -> 2 NH3(g) If 2.50 L N2 react with 7.00 L H2, what is the theoretical yield (in liters) of NH3? Assume that the volumes of reactants and products are measured at the same temperature and pressure.