Question

If 2.0 bar of He (g) was introduced to the following closed system at equilibrium what...

If 2.0 bar of He (g) was introduced to the following closed system at equilibrium what would happen?

N2 (g) + 3H2 (g) ⇌ 2NH3 (g)

a. Only the value of Keq would change.

b. The total pressure would change and the equilibrium would shift to favour the reactants.

c. The total pressure would change and the equilibrium would change to favour the products.

d. The total pressure would change however the equilibrium would not change.

e. The total pressure would not change and the equilibrium would not change.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the direction in which equilibrium will be shifted by the following changes. (Answers can be:...
Determine the direction in which equilibrium will be shifted by the following changes. (Answers can be: shift to products, shift to reactants, no change) N2(g) + 3H2(g) ⇌ 2NH3(g) (This reaction is exothermic and requires a catalyst to occur readily.) a. Increasing [N2]   ______________________________________________ b. Increasing pressure ______________________________________________ c. Decrease in temperature ______________________________________________
Would increasing the volume of the container for each of the following reactions at equilibrium cause...
Would increasing the volume of the container for each of the following reactions at equilibrium cause the system to shift in the direction of the products or the reactants? Part A 2NH3(g)???3H2(g)+N2(g) A. Increasing the volume will shift the system in the direction of the products. B. Increasing the volume will shift the system in the direction of the reactants. C. Increasing the volume will not shift the equilibrium. Part B N2(g)+O2(g)???2NO(g) A. Increasing the volume will shift the system...
1.) The equilibrium constant for the chemical equation N2(g)+3H2(g) <--> 2NH3(g) is Kp = 1.09 at...
1.) The equilibrium constant for the chemical equation N2(g)+3H2(g) <--> 2NH3(g) is Kp = 1.09 at 209 °C. Calculate the value of the Kc for the reaction at 209 °C. 2.) At a certain temperature, 0.3411 mol of N2 and 1.581 mol of H2 are placed in a 1.50-L container. N2(g)+3H2(g) <--> 2NH3(g) At equilibrium, 0.1801 mol of N2 is present. Calculate the equilibrium constant, Kc. 3.) At a certain temperature, the Kp for the decomposition of H2S is 0.748....
.   Consider the following equilibrium: 2 NO2 (g) + O2 (g) ⇌ 2 NO3 (g) +...
.   Consider the following equilibrium: 2 NO2 (g) + O2 (g) ⇌ 2 NO3 (g) + heat. (A)   How would the equilibrium shift if extra NO2 were added? (B) How would the equilibrium shift if O2 were removed? (C) How would you change the temperature to cause a shift to the products? (D) How would you change the pressure/volume to cause a shift to the reactants?
Consider the following exothermic equilibrium system in a closed container. In which direction will the equilibrium...
Consider the following exothermic equilibrium system in a closed container. In which direction will the equilibrium shift with each of the disturbances listed below? towards products or reactants or no change? 6H2O (l) +  CoCl4 2-(aq)  ↔ Co(H2O)62+(aq) + 4Cl- (aq) a. adding Na2CoCl4 (aq) b. adding Fe(OH)3 (s) . c. placing it in an ice bath. d. adding LiCl (aq) . e. adding AgNO3 (aq) .
1.) Consider the equilibrium N2(g) +3H2(g) = 2NH3 for which Kc = 6.00 x 10-2 at...
1.) Consider the equilibrium N2(g) +3H2(g) = 2NH3 for which Kc = 6.00 x 10-2 at 500 C a.) do reactants or products predominate in an equilibrium mixture at 500 C b.) An equilibrium mixture was found to have the following concentrations [H2] = .250 M [NH3] = 5.00 x 10-7 M at 500 C. What is the [N2] at equilibrium? c.) What is the numerical value of Kp at 500 C
Ammonia gas, NH3 (g), can be prepared according to the equilibrium below (to be called “the...
Ammonia gas, NH3 (g), can be prepared according to the equilibrium below (to be called “the system” henceforth): N2 (g) + 3H2 (g) ⇌ 2NH3 (g) Kc = 1.2 (at 375 0 C); ΔH0 = - 92 kJ A) Please calculate Kp for this equilibrium. B) Please determine Kp for the decomposition of ammonia into its elements C) Please determine the value of Qc given [NH3] = 0.110 M, [H2] = 0.099 M, and [N2] = 10.1 M. D) Please...
You mix an equal number of moles of nitrogen gas and hydrogen gas in a rigid...
You mix an equal number of moles of nitrogen gas and hydrogen gas in a rigid container such that the total pressure is 2.0 atm. The gases react at a constant temperature to form ammonia and the system reaches equilibrium according to the equation: N2(g) +3H2(g) = 2NH3(g) a. At equilibrium, the total pressure is 1.7335 at a given temperature. Determine the value of Kp for this reaction at this temperature.
Consider the following equilibrium in a sealed reactor: C2H4(g)+ 5O2 --> 4CO2(g)+ 2H2O(g) Predict the effect...
Consider the following equilibrium in a sealed reactor: C2H4(g)+ 5O2 --> 4CO2(g)+ 2H2O(g) Predict the effect of each of the following changes on the equilibrium position of the reaction. The reaction will either shift to the left (forming more reactants), stay the same, or shift to the right (forming more products). a) the partial pressure of O2(g) b) The volume of the reactor is double c) A total of 10.0 bar of Ar gas is added to the reactor.
The reaction ?2?12 (g) ⇆ ?4?6(g) + ?2?6(g) is at equilibrium at 1 bar at 700...
The reaction ?2?12 (g) ⇆ ?4?6(g) + ?2?6(g) is at equilibrium at 1 bar at 700 K. You may assume that there are no competing reactions when cyclohexane (C6H12) is heated to 700 K, and you may treat all gases as ideal (perfect) gases. (a) Write an expression for the equilibrium constant, K, in terms of partial pressures. State the units of pressure in your expression. (b) The partial pressure of each gas was measured for the above reaction at...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT