Question

The reaction ?2?12 (g) ⇆ ?4?6(g) + ?2?6(g) is at equilibrium at 1 bar at 700...

The reaction ?2?12 (g) ⇆ ?4?6(g) + ?2?6(g) is at equilibrium at 1 bar at 700 K.
You may assume that there are no competing reactions when cyclohexane (C6H12) is heated to 700

K, and you may treat all gases as ideal (perfect) gases.

(a) Write an expression for the equilibrium constant, K, in terms of partial pressures. State the units of pressure in your expression.

(b) The partial pressure of each gas was measured for the above reaction at equilibrium:? C6H12 = 0.1824 bar, ?C4H6= ?C2 H6= 0.4088 bar. Calculate the value of K at 700 K.

(c) What happens to the value of K when the total pressure is raised to 2 bar at 700 K?

(d) What happens to the position of equilibrium when the total pressure is raised to 2 bar at 700 K? Explain your answer using an equation involving the mole fractions of reactants and products.

Homework Answers

Answer #1

a)

The expression of equilibrium constant in terms of partial pressure is as

K = (PC4H6) (PC2H6)/(PC6H12) bar

b)

K = (0.4088) (0.4088)/(0.1824) bar
K = 0.9162 bar

The value of K at 700 K = 0.9162

c)

On increasing the total pressure of the reaction does not alter the equilibrium constant.

d)

According to Le-Chatelier principle, when total pressure of the reaction is raised to 2 bar at 700 K, the position of equilibrium will shift towards reverse. This is because the volume of the product is more than the reactant.i.e. the mole fraction of product is higher than the reactant.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. The reaction I2(g) + Cl2(g) ⇔ 2 ICl(g) is at equilibrium when the partial pressures...
1. The reaction I2(g) + Cl2(g) ⇔ 2 ICl(g) is at equilibrium when the partial pressures are: I2 = 0.027 atm, Cl2 = 0.027 atm and ICl = 0.246 atm. The partial pressure of ICl is then increased to 0.500 atm by adding ICl. a. When the system re-establishes equilibrium, what is the partial pressure of Cl2(g)? b. When the system re-establishes equilibrium, what is the partial pressure of ICl(g) c. When the system re-establishes equilibrium, what is the partial...
At a particular temperature, Kp = 0.26 for the reaction below. N2O4(g) equilibrium reaction arrow 2...
At a particular temperature, Kp = 0.26 for the reaction below. N2O4(g) equilibrium reaction arrow 2 NO2(g) (a) A flask containing only N2O4 at an initial pressure of 4.9 atm is allowed to reach equilibrium. Calculate the equilibrium partial pressures of the gases. b) he volume of the container in part (a) is decreased to one-half the original volume. Calculate the new equilibrium partial pressures.
1) The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) <---...
1) The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) <--- ----->PCl3(g) + Cl2(g) (reversible) Calculate the equilibrium partial pressures of all species when PCl5(g) is introduced into an evacuated flask at a pressure of 1.52 atm at 500 K.   PPCl5 = _____atm PPCl3 = ______atm PCl2 = ______atm 2) The equilibrium constant, Kp, for the following reaction is 55.6 at 698 K: H2(g) + I2(g) <----- ----> 2HI(g) (reversible) Calculate the equilibrium partial pressures...
Consider the reaction CO(g)+NH3(g)⇌HCONH2(g), K=2.70 at 550 K If a reaction vessel initially contains only CO...
Consider the reaction CO(g)+NH3(g)⇌HCONH2(g), K=2.70 at 550 K If a reaction vessel initially contains only CO and NH3 at partial pressures of 3.00 bar and 3.00 bar, respectively, what will the partial pressure of HCONH2 be at equilibrium?
The equilibrium constant, Kp, for the following reaction is 9.52×10-2 at 350 K: CH4(g) + CCl4(g)...
The equilibrium constant, Kp, for the following reaction is 9.52×10-2 at 350 K: CH4(g) + CCl4(g) 2CH2Cl2(g) Calculate the equilibrium partial pressures of all species when CH4 and CCl4, each at an intitial partial pressure of 1.12 atm, are introduced into an evacuated vessel at 350 K. PCH4 = ________ atm PCCl4 = ________atm PCH2Cl2 = ________ atm
An equilibrium mixture for the following reaction: H2(g) + I2(g) <---> 2HI(g) is composed of the...
An equilibrium mixture for the following reaction: H2(g) + I2(g) <---> 2HI(g) is composed of the following: P(I2) = 0.08592 atm; P(H2) = 0.08592 atm; P(HI) = 0.5996 atm. If this equilibrium is disturbed by adding more HI so that the partial pressure of HI is suddenly increased to 1.0000 atm, what will the partial pressures of each of the gases be when the system returns to equilibrium?   
The equilibrium constant Kp for the reaction C(s)+H2O(g)?CO(g)+H2(g) is 2.44 at 1000 K. What are the...
The equilibrium constant Kp for the reaction C(s)+H2O(g)?CO(g)+H2(g) is 2.44 at 1000 K. What are the equilibrium partial pressures of H2O, CO, and H2 if the initial partial pressures are PCO= 1.25 atm, and PH2= 1.60 atm? What is the equilibrium partial pressure of H2O? What is the equilibrium partial pressure of CO? What is the equilibrium partial pressure of H2?
1)A reaction vessel at 27 ∘C contains a mixture of SO2(P= 3.10 atm ) and O2(P=...
1)A reaction vessel at 27 ∘C contains a mixture of SO2(P= 3.10 atm ) and O2(P= 1.00 atm ). When a catalyst is added the reaction 2SO2(g)+O2(g)⇌2SO3(g) takes place. At equilibrium the total pressure is 3.85 atm. -Find the value of Kc. 2)A sample of SO3 is introduced into an evacuated sealed container and heated to 600 K. The following equilibrium is established: 2SO3(g)⇌2SO2(g)+O2(g). The total pressure in the system is found to be 3.0 atm and the mole fraction...
Consider the following reversible heterogenous reaction: C(s)+CO2(g) <--> 2CO(g) When equilibrium is reached at a certain...
Consider the following reversible heterogenous reaction: C(s)+CO2(g) <--> 2CO(g) When equilibrium is reached at a certain temperature, the total pressure of the system is found to be 5.17 atm. If the equilibbrium constant Kp for this reaction is equal to 1.67 at this temperature, calculate the equilibrium partial pressures of CO2 and CO gases.
At 400K, the equilibrium constant for the reaction I2(g) + F2(g) <==> 2 IF (g) Kp...
At 400K, the equilibrium constant for the reaction I2(g) + F2(g) <==> 2 IF (g) Kp = 7.0. A closed vessel at 400 K is charged with 1.46 atm I2, 1.46 atm F2, and 3.66 atm of IF. Which of the following statements is true? CAN YOU PLEASE EXPLAIN WHY? THANK YOU! A. The equilibrium partial pressures of I2 F2, and IF will not change. B. At equilibrium, the total pressure of IF wil be greater than 3.66 atm. C....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT