Question

Consider the following reaction: H2+ICl?I2+2HCl,rate=k[H2][ICl] a) What is the overall reaction order? b) What are the...

Consider the following reaction:

H2+ICl?I2+2HCl,rate=k[H2][ICl]

a) What is the overall reaction order?

b) What are the units of the rate constant k for this reaction?

c) What would happen to the rate if [H2] were doubled? stay the same, double, triple, or quadruple

d) What would happen to the rate if [ICl] were doubled? stay the same, quadruple, triple, or double?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Learning Goal: To understand reaction order and rate constants. For the general equation aA+bB?cC+dD, the rate...
Learning Goal: To understand reaction order and rate constants. For the general equation aA+bB?cC+dD, the rate law is expressed as follows: rate=k[A]m[B]n where m and n indicate the order of the reaction with respect to each reactant and must be determined experimentally and k is the rate constant, which is specific to each reaction. Order For a particular reaction, aA+bB+cC?dD, the rate law was experimentally determined to be rate=k[A]0[B]1[C]2=k[B][C]2 This equation is zero order with respect to A. Therefore, changing...
What are the units of k for the rate law: Rate = k[A]2[B]2, when the concentration...
What are the units of k for the rate law: Rate = k[A]2[B]2, when the concentration unit is mol/L? A. s-1 B. L mol-1 s-1 C. L2 mol-2 s-1 D. L3 mol-3 s-1 A reaction has the following stoichiometry: H2 + 2 ICl ---> I2 + 2 HCl Which of the following would be a correct definition of the rate? A. Rate = +Δ[H2]/Δt B. Rate = +Δ[HCl]/Δt C. Rate = -Δ[ICl]/Δt D. Rate = +(1/2)Δ[HCl]/Δt
Hydrogen iodide decomposes slowly to H2 and I2 at 600 K. The reaction is second order...
Hydrogen iodide decomposes slowly to H2 and I2 at 600 K. The reaction is second order in HI and the rate constant is 9.7×10−6M−1s−1. If the initial concentration of HI is 0.100 M . What is its molarity after a reaction time of 5.00 days?
2. TheratelawforthereactionA+B→Productswasfoundtoberate=k[A][B]2. a. What is the reaction order with respect to A? b. What is the...
2. TheratelawforthereactionA+B→Productswasfoundtoberate=k[A][B]2. a. What is the reaction order with respect to A? b. What is the reaction order with respect to B? c. What is the overall order of the reaction? d. If the concentration of A is doubled while B is left unchanged, what happens to the rate of the reaction? e. If the concentration of B is doubled while A remains unchanged, what happens to the rate of the reaction? f. What does k represent in the rate...
Propose a reaction mechanism for the following: Mg(s)+2HCl(aq)---->H2(aq)+MgCl2(aq) The reaction order is 4; Rate=k〖[HCl]〗^2 〖[Mg]〗^2 I...
Propose a reaction mechanism for the following: Mg(s)+2HCl(aq)---->H2(aq)+MgCl2(aq) The reaction order is 4; Rate=k〖[HCl]〗^2 〖[Mg]〗^2 I need help determining the elementary steps as chemical equations
Hydrogen iodide decomposes slowly to H2 and I2 at 600 K. The reaction is second order...
Hydrogen iodide decomposes slowly to H2 and I2 at 600 K. The reaction is second order in HI and the rate constant is 9.7×10^−6 M^−1s^−1. If the initial concentration of HI is 0.130 M... What is its molarity after a reaction time of 7.00 days? What is the time (in days) when the HI concentration reaches a value of 7.5×10^−2 M ?
During the initial stages of the following reaction the rate law is Rate = k[H2][Br2]½. H2(g)...
During the initial stages of the following reaction the rate law is Rate = k[H2][Br2]½. H2(g) + Br2(g) → 2 HBr(g) What is the order of the reaction with respect to each component and the overall order?
-Consider the following reaction: 2HI(g) H2(g) + I2(g) If 3.69 moles of HI(g), 0.570 moles of...
-Consider the following reaction: 2HI(g) H2(g) + I2(g) If 3.69 moles of HI(g), 0.570 moles of H2, and 0.558 moles of I2 are at equilibrium in a 16.6 L container at 818 K, the value of the equilibrium constant, Kc, is_____________ .Consider the following reaction: 2NH3(g) N2(g) + 3H2(g) If 1.31×10-3 moles of NH3(g), 0.681 moles of N2, and 0.495 moles of H2 are at equilibrium in a 18.6 L container at 893 K, the value of the equilibrium constant,...
An equilibrium mixture contains 0.710 mol HI, 0.460 mol I2, and 0.250 mol H2 in a...
An equilibrium mixture contains 0.710 mol HI, 0.460 mol I2, and 0.250 mol H2 in a 1.00-L flask. What is the equilibrium constant for the following reaction? 2HI(g) H2(g) + I2(g) K = How many moles of I2 must be removed in order to double the number of moles of H2 at equilibrium? _______ mol I2
Consider the reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.64 −L flask at 500 K initially...
Consider the reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.64 −L flask at 500 K initially contains 0.376 g H2 and 17.97 g I2. At equilibrium, the flask contains 17.76 g HI. Part A Calculate the equilibrium constant at this temperature.                I keep getting 13413.06 and its not right I'm running out of tries, please help me.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT