Question

-Consider the following reaction: 2HI(g) H2(g) + I2(g) If 3.69 moles of HI(g), 0.570 moles of...

-Consider the following reaction:

2HI(g) H2(g) + I2(g)

If 3.69 moles of HI(g), 0.570 moles of H2, and 0.558 moles of I2 are at equilibrium in a 16.6 L container at 818 K, the value of the equilibrium constant, Kc, is_____________

.Consider the following reaction:

2NH3(g) N2(g) + 3H2(g)

If 1.31×10-3 moles of NH3(g), 0.681 moles of N2, and 0.495 moles of H2 are at equilibrium in a 18.6 L container at 893 K, the value of the equilibrium constant, Kc, is __________

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A student ran the following reaction in the laboratory at 742 K: H2(g) + I2(g) <<------->>>2HI(g)...
A student ran the following reaction in the laboratory at 742 K: H2(g) + I2(g) <<------->>>2HI(g) When she introduced 0.202 moles of H2(g) and 0.225 moles of I2(g) into a 1.00 liter container, she found the equilibrium concentration of HI(g) to be 0.331 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc =
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g)...
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g) At this temperature, 0.300 mol of H2 and 0.300 mol of I2 were placed in a 1.00 L container to react. What concentration of HI is present at equilibrium? View comments (1)
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.75 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.75 L flask at a certain temperature initially contains 0.764 g H2 and 97.1 g I2. At equilibrium, the flask contains 90.4 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Please explain!
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.63 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.63 L flask at a certain temperature initially contains 0.767 g H2 and 97.0 g I2. At equilibrium, the flask contains 90.6 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Express your answer using two significant figures.
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g)------> H2(g) +...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g)------> H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.311 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI]= ___ M [H2]= ___M [I2]= ____M
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----<>H2(g) +...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----<>H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.249 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI] = M [H2] = M [I2] = M
0.250 moles of H2 and 0.250 moles of I2 were placed in a 1.00 L flask...
0.250 moles of H2 and 0.250 moles of I2 were placed in a 1.00 L flask at 500˚. The equilibrium constant, Kc, for the reaction H2(g)+I2(g)-> 2HI(g) is 54.3. Calculate the equilibrium concentrations of all species.
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <----> 2HI(g) Kc=53.3 At this temperature, 0.400 mol of H2 and 0.400 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
For the reaction H2 + I2 (g)2HI (g) with Kc = 54.3 at 698 K, if...
For the reaction H2 + I2 (g)2HI (g) with Kc = 54.3 at 698 K, if the initial amounts were 0.800 mole H2 and 0.500 mole I2 in a 5.25-L vessel at 698 K, write the ICE table, and what will be the amounts of reactants and products (in mole(s)) when equilibrium is attained?
H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.71 L flask at a certain temperature initially contains 0.760...
H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.71 L flask at a certain temperature initially contains 0.760 g H2 and 96.8 g I2. At equilibrium, the flask contains 90.5 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature.