Question

For each of the following, give an example of a function g and a function f...

For each of the following, give an example of a function g and a function f that satisfy the stated conditions. Or state that such an example cannot exist. Be sure to clearly state the domain and codomain for each function.
(a)The function g is a surjection, but the function fog is not a surjection.

(b) The function g is not an injection, but the function fog is an injection.
(c)The function g is an injection, but the function fog is not an injection.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For each of the following, give a specific example of sets that satisfy the stated conditions....
For each of the following, give a specific example of sets that satisfy the stated conditions. (a) A and B are infinite and |B −A| = 3. (b) A is infinite, U is infinite, and Ac is infinite. (c) A is infinite, U is infinite, and Ac is finite.
Find each of the following functions. f(x) = 4 − 4x, g(x) = cos(x) (a) f...
Find each of the following functions. f(x) = 4 − 4x, g(x) = cos(x) (a) f ∘ g and State the domain of the function. (Enter your answer using interval notation.) (b) g ∘ f and State the domain of the function. (Enter your answer using interval notation.) (c) f ∘ f and State the domain of the function. (Enter your answer using interval notation.) (d) g ∘ g and State the domain of the function. (Enter your answer using...
Let f : [0,∞) → [0,∞) be defined by, f(x) := √ x for all x...
Let f : [0,∞) → [0,∞) be defined by, f(x) := √ x for all x ∈ [0,∞), g : [0,∞) → R be defined by, g(x) := √ x for all x ∈ [0,∞) and h : [0,∞) → [0,∞) be defined by h(x) := x 2 for each x ∈ [0,∞). For each of the following (i) state whether the function is defined - if it is then; (ii) state its domain; (iii) state its codomain; (iv) state...
Let Let A = {a, e, g} and B = {c, d, e, f, g}. Let...
Let Let A = {a, e, g} and B = {c, d, e, f, g}. Let f : A → B and g : B → A be defined as follows: f = {(a, c), (e, e), (g, d)} g = {(c, a), (d, e), (e, e), (f, a), (g, g)} (a) Consider the composed function g ◦ f. (i) What is the domain of g ◦ f? What is its codomain? (ii) Find the function g ◦ f. (Find...
Let A be a finite set and let f be a surjection from A to itself....
Let A be a finite set and let f be a surjection from A to itself. Show that f is an injection. Use Theorem 1, 2 and corollary 1. Theorem 1 : Let B be a finite set and let f be a function on B. Then f has a right inverse. In other words, there is a function g: A->B, where A=f[B], such that for each x in A, we have f(g(x)) = x. Theorem 2: A right inverse...
Let f be a function from the set of students in a discrete mathematics class to...
Let f be a function from the set of students in a discrete mathematics class to the set of all possible final grades. (a) Under what conditions is f an injection? (b) Under what conditions is f a surjection? (please show all work)
Continuity, differentiability questions: • Give an example of a function f: R → R that is...
Continuity, differentiability questions: • Give an example of a function f: R → R that is continuous everywhere on its domain but has at least one point at which it is not differentiable. • Give an example of a function f: R → R that is not continuous at 0.
For each problem below, either give an example of a function satisfying the give conditions, or...
For each problem below, either give an example of a function satisfying the give conditions, or explain why no such function exists. (a) An injective function f:{1,2,3,4,5}→{1,2,3,4} (b) A surjective function f:{1,2,3,4,5}→{1,2,3,4} (c) A bijection f:N→E, where E is the set of all positive even integers (d) A function f:N→E that is surjective but not injective (e) A function f:N→E that is injective but not surjective
For each set of conditions below, give an example of a predicate P(n) defined on N...
For each set of conditions below, give an example of a predicate P(n) defined on N that satisfy those conditions (and justify your example), or explain why such a predicate cannot exist. (a) P(n) is True for n ≤ 5 and n = 8; False for all other natural numbers. (b) P(1) is False, and (∀k ≥ 1)(P(k) ⇒ P(k + 1)) is True. (c) P(1) and P(2) are True, but [(∀k ≥ 3)(P(k) ⇒ P(k + 1))] is False....
4. Let f be a function with domain R. Is each of the following claims true...
4. Let f be a function with domain R. Is each of the following claims true or false? If it is false, show it with a counterexample. If it is true, prove it directly from the FORMAL DEFINITION of a limit. (a) IF limx→∞ f(x) = ∞ THEN limx→∞ sin (f(x))  does not exist. (b) IF f(−1) = 0 and f(1) = 2 THEN limx→∞ f(sin(x)) does not exist.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT