Question

Suppose that a is an odd integer and (a,91)=1. Prove that a^12≡1(mod 1456).

Suppose that a is an odd integer and (a,91)=1. Prove that a^12≡1(mod 1456).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let m = 2k + 1 be an odd integer. Prove that k + 1 is...
Let m = 2k + 1 be an odd integer. Prove that k + 1 is the multiplicative inverse of 2, mod m.
Without using induction, prove that for x is an odd, positive integer, 3x ≡−1 (mod 4)....
Without using induction, prove that for x is an odd, positive integer, 3x ≡−1 (mod 4). I'm not sure how to approach the problem. I thought to assume that x=2a+1 and then show that 3^x +1 is divisible by 4 and thus congruent to 3x=-1(mod4) but I'm stuck.
Prove that if a is an odd integer, then a | b^2 -1 implies that a...
Prove that if a is an odd integer, then a | b^2 -1 implies that a = (a,b-1)(a,b+1)
Prove that if an integer is odd, then its square is also odd. Use the result...
Prove that if an integer is odd, then its square is also odd. Use the result to establish that if the square of an integer is known to be even, the integer must be even
1. Let n be an integer. Prove that n2 + 4n is odd if and only...
1. Let n be an integer. Prove that n2 + 4n is odd if and only if n is odd? PROVE 2. Use a table to express the value of the Boolean function x(z + yz).
Let p be an odd prime and let a be an odd integer with p not...
Let p be an odd prime and let a be an odd integer with p not divisible by a. Suppose that p = 4a + n2 for some integer n. Prove that the Legendre symbol (a/p) equals 1.
If n is an odd integer, prove that 12 divides n2+(n+2)2+(n+4)2+1. Please provide full solution!
If n is an odd integer, prove that 12 divides n2+(n+2)2+(n+4)2+1. Please provide full solution!
a) Prove: If n is the square of some integer, then n /≡ 3 (mod 4)....
a) Prove: If n is the square of some integer, then n /≡ 3 (mod 4). (/≡ means not congruent to) b) Prove: No integer in the sequence 11, 111, 1111, 11111, 111111, . . . is the square of an integer.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT