Question

Prove that if an integer is odd, then its square is also odd. Use the result...

Prove that if an integer is odd, then its square is also odd. Use the result to establish that if the square of an integer is known to be even, the integer must be even

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Use the method of direct proof to prove the following statements. 26. Every odd integer is...
Use the method of direct proof to prove the following statements. 26. Every odd integer is a difference of two squares. (Example 7 = 4 2 −3 2 , etc.) 20. If a is an integer and a^ 2 | a, then a ∈ { −1,0,1 } 5. Suppose x, y ∈ Z. If x is even, then x y is even.
1. Let n be an integer. Prove that n2 + 4n is odd if and only...
1. Let n be an integer. Prove that n2 + 4n is odd if and only if n is odd? PROVE 2. Use a table to express the value of the Boolean function x(z + yz).
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer...
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer k such that n < k + 3 ≤ n + 2 . (You can use that facts without proof that even plus even is even or/and even plus odd is odd.)
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Statement 3. If m is an even integer, then 3m + 5 is an odd integer....
Statement 3. If m is an even integer, then 3m + 5 is an odd integer. a. Play with the statement - i.e., Look at/test a few examples. (See if there are any counter-examples.) b. Write a proof of this statement. (Hint: 5 = 4 + 1 = 2(2) + 1) Remark 1. Let's recap some important properties about odd and even that we have seen (in notes and this activity): i. If a and b are even, then ab...
Prove that if a is an odd integer, then a | b^2 -1 implies that a...
Prove that if a is an odd integer, then a | b^2 -1 implies that a = (a,b-1)(a,b+1)
True Or False 1. If nn is odd and the square root of nn is a...
True Or False 1. If nn is odd and the square root of nn is a natural number then the square root of nn is odd. 2. The square of any even integer is even 3. The substraction of 2 rational numbers is rational. 4. If nn is an odd integer, then n2+nn2+n is even. 5. If a divides b and a divides c then a divides bc. 6. For all real numbers a and b, if a^3=b^3 then a=b.
Let n be an odd integer. Prove that 5460 | n25 −n
Let n be an odd integer. Prove that 5460 | n25 −n
Prove the following: If n is odd, use divisibility arguments to prove that n3 −n is...
Prove the following: If n is odd, use divisibility arguments to prove that n3 −n is divisible by 24. If the integer n is not divisible by 3, prove that n2 + 2 is divisible by 3.