Question

Prove that if a is an odd integer, then a | b^2 -1 implies that a...

Prove that if a is an odd integer, then a | b^2 -1 implies that a = (a,b-1)(a,b+1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let m = 2k + 1 be an odd integer. Prove that k + 1 is...
Let m = 2k + 1 be an odd integer. Prove that k + 1 is the multiplicative inverse of 2, mod m.
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Prove that if an integer is odd, then its square is also odd. Use the result...
Prove that if an integer is odd, then its square is also odd. Use the result to establish that if the square of an integer is known to be even, the integer must be even
Suppose that a is an odd integer and (a,91)=1. Prove that a^12≡1(mod 1456).
Suppose that a is an odd integer and (a,91)=1. Prove that a^12≡1(mod 1456).
If n is an odd integer, prove that 12 divides n2+(n+2)2+(n+4)2+1. Please provide full solution!
If n is an odd integer, prove that 12 divides n2+(n+2)2+(n+4)2+1. Please provide full solution!
Let n be an integer greater than 2. Prove that every subgroup of Dn with odd...
Let n be an integer greater than 2. Prove that every subgroup of Dn with odd order is cyclic.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Let n be an odd integer. Prove that 5460 | n25 −n
Let n be an odd integer. Prove that 5460 | n25 −n
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd...
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd integer k.