Question

Let m = 2k + 1 be an odd integer. Prove that k + 1 is...

Let m = 2k + 1 be an odd integer. Prove that k + 1 is the multiplicative inverse of 2, mod m.

Homework Answers

Answer #1

This is the required proof.I hope the solution will help you.Please give a thumbs up if you get benefited by my effort.Your feedback is very much precious to me.Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If p = 2k − 1 is prime, show that k is an odd integer or...
If p = 2k − 1 is prime, show that k is an odd integer or k = 2. Hint: Use the difference of squares 22m − 1 = (2m − 1)(2m + 1).
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and...
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and q are prime numbers and p < q, then 2p + q^2 is odd (Hint: all prime numbers greater than 2 are odd)
Suppose that a is an odd integer and (a,91)=1. Prove that a^12≡1(mod 1456).
Suppose that a is an odd integer and (a,91)=1. Prove that a^12≡1(mod 1456).
Let p be an odd prime and let a be an odd integer with p not...
Let p be an odd prime and let a be an odd integer with p not divisible by a. Suppose that p = 4a + n2 for some integer n. Prove that the Legendre symbol (a/p) equals 1.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Let n be an odd integer. Prove that 5460 | n25 −n
Let n be an odd integer. Prove that 5460 | n25 −n
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
let n be an odd integer ,prove that 5460 | n^25-n
let n be an odd integer ,prove that 5460 | n^25-n
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2...
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2 (mod p). (You will need Wilson’s theorem, (p−1)! ≡−1 (mod p).) This gives another proof that if p ≡ 1 (mod 4), then x^2 ≡ −1 (mod p) has a solution.
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd...
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd integer k.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT