Question

Prove that for every positive integer n, there exists a multiple of n that has for...

Prove that for every positive integer n, there exists a multiple of n that has for its digits only 0s and 1s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that for every positive integer n, there exists an irreducible polynomial of degree n in...
Prove that for every positive integer n, there exists an irreducible polynomial of degree n in Q[x].
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer...
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer k such that n < k + 3 ≤ n + 2 . (You can use that facts without proof that even plus even is even or/and even plus odd is odd.)
Prove that if for epsilon >0 there exists a positive integer n such that for all...
Prove that if for epsilon >0 there exists a positive integer n such that for all n>N we have p_n is an element of (x+(-epsilon),x+epsilon) then p_1,p_2, ... p_n converges to x.
Prove or disprove that 3|(n^3 − n) for every positive integer n.
Prove or disprove that 3|(n^3 − n) for every positive integer n.
4) Let F be a finite field. Prove that there exists an integer n ≥ 1,...
4) Let F be a finite field. Prove that there exists an integer n ≥ 1, such that n.1F = 0F . Show further that the smallest positive integer with this property is a prime number.
Prove that a positive integer n, n > 1, is a perfect square if and only...
Prove that a positive integer n, n > 1, is a perfect square if and only if when we write n = P1e1P2e2... Prer with each Pi prime and p1 < ... < pr, every exponent ei is even. (Hint: use the Fundamental Theorem of Arithmetic!)
Translate into symbolic logic: 1. There exists an integer that is a multiple of 6. 2....
Translate into symbolic logic: 1. There exists an integer that is a multiple of 6. 2. Every natural number is positive.
Prove that 2n < n! for every integer n ≥ 4.
Prove that 2n < n! for every integer n ≥ 4.
Definition of Even: An integer n ∈ Z is even if there exists an integer q...
Definition of Even: An integer n ∈ Z is even if there exists an integer q ∈ Z such that n = 2q. Definition of Odd: An integer n ∈ Z is odd if there exists an integer q ∈ Z such that n = 2q + 1. Use these definitions to prove the following: Prove that zero is not odd. (Proof by contradiction)
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove...
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove this by directly proving the negation.Your proof must only use integers, inequalities and elementary logic. You may use that inequalities are preserved by adding a number on both sides,or by multiplying both sides by a positive number. You cannot use the square root function. Do not write a proof by contradiction.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT