Question

Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer...

Discrete Math

6. Prove that for all positive integer n, there exists an even positive integer k such that

n < k + 3 ≤ n + 2

. (You can use that facts without proof that even plus even is even or/and even plus odd is odd.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Definition of Even: An integer n ∈ Z is even if there exists an integer q...
Definition of Even: An integer n ∈ Z is even if there exists an integer q ∈ Z such that n = 2q. Definition of Odd: An integer n ∈ Z is odd if there exists an integer q ∈ Z such that n = 2q + 1. Use these definitions to prove the following: Prove that zero is not odd. (Proof by contradiction)
Prove the following theorem: For every integer n, there is an even integer k such that...
Prove the following theorem: For every integer n, there is an even integer k such that n ≤ k+1 < n + 2. Your proof must be succinct and cannot contain more than 60 words, with equations or inequalities counting as one word. Type your proof into the answer box. If you need to use the less than or equal symbol, you can type it as <= or ≤, but the proof can be completed without it.
Prove the following theorem: For every integer n, there is an even integer k such that...
Prove the following theorem: For every integer n, there is an even integer k such that n ≤ k+1 < n + 2. Your proof must be succinct and cannot contain more than 60 words, with equations or inequalities counting as one word. Type your proof into the answer box. If you need to use the less than or equal symbol, you can type it as <= or ≤, but the proof can be completed without it.
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive...
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive integer n.
Prove that if for epsilon >0 there exists a positive integer n such that for all...
Prove that if for epsilon >0 there exists a positive integer n such that for all n>N we have p_n is an element of (x+(-epsilon),x+epsilon) then p_1,p_2, ... p_n converges to x.
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove...
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove this by directly proving the negation.Your proof must only use integers, inequalities and elementary logic. You may use that inequalities are preserved by adding a number on both sides,or by multiplying both sides by a positive number. You cannot use the square root function. Do not write a proof by contradiction.
Prove that for every positive integer n, there exists a multiple of n that has for...
Prove that for every positive integer n, there exists a multiple of n that has for its digits only 0s and 1s.
Prove that for every positive integer n, there exists an irreducible polynomial of degree n in...
Prove that for every positive integer n, there exists an irreducible polynomial of degree n in Q[x].
Prove that if n is a positive integer greater than 1, then n! + 1 is...
Prove that if n is a positive integer greater than 1, then n! + 1 is odd Prove that if a, b, c are integers such that a2 + b2 = c2, then at least one of a, b, or c is even.
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2....
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2. (b) What’s the GCD (N + 2, N) if N is an odd integer?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT