Question

Suppose that, in each period of a two-period stock price model, the cost of a security...

Suppose that, in each period of a two-period stock price model, the cost of a security either goes up by a factor of u = 2 or down by a factor d = 1/2. Assume the initial price of the security is $80 and that the interest rate r is 0.

a). Compute the risk neutral probabilities p (price moves up) and q = 1−p (price moves down) for this model.
b). Sketch a diagram of this two period stock price model.
c). Assuming the strike price of a European call option on this security is $70, compute the possible payoffs of the call option given that the option expires in two periods.
d). What is the expected value of the payoff of the call option?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following data for a two-period binomial model. The stock’s price S is $100. After...
Consider the following data for a two-period binomial model. The stock’s price S is $100. After three months, it either goes up and gets multiplied by the factor U = 1.138473, or it goes down and gets multiplied by the factor D = 0.886643. Options mature after T = 0.5 year and have a strike price of K = $110. The continuously compounded risk-free interest rate r is 5 percent per year. Today’s European call price is c and the...
Problem: For a two-period binomial model, you are given: (i) Each period is one year. h=1...
Problem: For a two-period binomial model, you are given: (i) Each period is one year. h=1 (ii) The current price for a non-dividend-paying stock is 100. S(0)=100 (iii) when stock price goes up u=1.25, (iv) when stock price down d=0.80, (v) The continuously compounded risk-free interest rate is 7%. r=0.07 Calculate the price of an American call option on the stock with strike price of 100. K=100, was there early exercise?
The short riskless interest rate is 25% per period. The two-period corn futures price is $150...
The short riskless interest rate is 25% per period. The two-period corn futures price is $150 today and will go up or down by $50 each period, with risk neutral probabilities 1/2 and 1/2. Consider a European futures call option with an exercise price of $125 maturing two periods from now. a. What are futures prices in the tree? b. What are the call payoffs at maturity? c. What is the price of the futures call option at each node...
Suppose that stock price moves up by 5% (u=1.05) and d=1/u. The current stock price is...
Suppose that stock price moves up by 5% (u=1.05) and d=1/u. The current stock price is $50. Dividend is zero. Compute the current value of a European call option with the strike price of $51 in 3 months using both replicating portfolio valuation method and the risk neutral valuation method. The risk free rate is APR 5% with continuous compounding (or, 5% per annum)1.  Draw the dynamics of stock price and option price using the one step binomial tree. 2. Draw...
Calculate the American call price using the two-period binomial model. The current stock price is 50...
Calculate the American call price using the two-period binomial model. The current stock price is 50 and the exercise price is 55. The option expires in 25 days and volatility is 75%. Would the European call have a different price? If so, would it be higher or lower? Using the information from the problem show how to create a riskless portfolio. Proves that it is riskless after 1 period. (You do not have to draw the stock price path and...
Replicating portfolios. A stock sells for $50 today. The risk-free rate over the period is 10%...
Replicating portfolios. A stock sells for $50 today. The risk-free rate over the period is 10% with annual compounding. Assume that next period (in one year) the stock will either go up by 30% (to $65) with probability 0.7 or go down by 20% (to $40) with probability 0.3. Suppose you own an out-of-the-money European call option on the stock with a strike price X equal to the futures price for delivery in one year. In what follows, always use...
Assume a one-period (annual) binomial model with the following characteristics: current stock price is $25, the...
Assume a one-period (annual) binomial model with the following characteristics: current stock price is $25, the up factor for each period is 1.05, the down factor for each period is 0.95, and the risk-free rate is 3 percent. (a) (4 pts) Draw the binomial tree for the stock with the appropriate pricing. (b) (2 pts) What is the current hedge ratio for a European call for that stock if it has a strike price of $22 and will expire in...
A stock price is currently $100. Over each of the next two 3-month periods it is...
A stock price is currently $100. Over each of the next two 3-month periods it is expected to go up or go down with up-factor u and down-factor d. The risk-free interest rate is 6% per annum with continuously compounding. Consider a 6-month American put option with a strike price of K. Find the price of this American put option. Motivate your solutions, discuss early exercising decisions at each nodes prior to the maturity. K = 100, u = 1.3,...
The stock price is currently $110. Over each of the next two six-month periods, it is...
The stock price is currently $110. Over each of the next two six-month periods, it is expected to go up by 12% or down by 12%. The risk-free interest rate is 8% per annum with continuous compounding. What is the value of a one-year European call option with a strike price of $100?
The price of a non dividend pay stock is 60$. Use a two step tree to...
The price of a non dividend pay stock is 60$. Use a two step tree to value a European call option on the stock with a strike price of 60$ that expires in 6 months. The risk free rate is 5% with continuous compounding. Assume that the option is written on 100 shares of stock, and that u=1.15 and d=0.85. What is the option price today? How would you hedge a postiion wheere you buy the call option today?