Question

A stock price is currently $100. Over each of the next two 3-month periods it is...

A stock price is currently $100. Over each of the next two 3-month periods it
is expected to go up or go down with up-factor u and down-factor d. The risk-free interest
rate is 6% per annum with continuously compounding. Consider a 6-month American put
option with a strike price of K.

Find the price of this American put option. Motivate your solutions, discuss early exercising decisions at each nodes prior to the maturity.

K = 100, u = 1.3, d = 0.9

Homework Answers

Answer #1

Formulas Used :-

p=(EXP(C6*C7)-F4)/(F3-F4)
1-p=1-F6


Stock(step-1)=C16*$F$3


Option(step-1)=MAX(EXP(-$C$6*$C$7)*((E13*$F$6)+($F$7*E17)),EXP(-$C$6*$C$7)*($C$4-D14))


Stock(step-2)=C16*$F$4


Option (step-2)=MAX(EXP(-$C$6*$C$7)*((E17*$F$6)+($F$7*E21)),EXP(-$C$6*$C$7)*($C$4-D18))


Option Value=EXP(-$C$6*$C$7)*((D15*$F$6)+($F$7*D19))

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by10%. The risk-free interest rate is 12% per annum with continuous compounding. (a) What is the value of a six-month European put option with a strike price of $42? (b) What is the value of a six-month American put option with strike price of $42?
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by 10% or down by 10%. The risk-free interest rate is 12% per annum with continuous compounding. What is the value of a six-month European put option with a strike price of $42? What is the value of a six-month American put option with a strike price of $42? What is the value of a six-month American put option with...
A stock price is currently $100. Over each of the next two six-month periods, it is...
A stock price is currently $100. Over each of the next two six-month periods, it is expected to go up by 10% or down by 10%. The risk-free interest rate is 10% per year with semi-annual compounding. Part I. Use the two-steps binomial tree model to calculate the value of a one-year American put option with an exercise price of $101. Part II. Is there any early exercise premium contained in price of the above American put option? If there...
The stock price is currently $110. Over each of the next two six-month periods, it is...
The stock price is currently $110. Over each of the next two six-month periods, it is expected to go up by 12% or down by 12%. The risk-free interest rate is 8% per annum with continuous compounding. What is the value of a one-year European call option with a strike price of $100?
A stock price is currently S = 100. Over the next year, it is expected to...
A stock price is currently S = 100. Over the next year, it is expected to go up by 100% (u = 2) or down by 50% (d = 0.50). The risk-free interest rate is r = 20% per annum with continuous compounding. What is the value of a 12-month European Put option with a strike price K = 100?
A stock price is currently $50. Over each of the next two three-month periods it is...
A stock price is currently $50. Over each of the next two three-month periods it is expected to go up by 8% with a probability of 50% or down by 4% with a probability of 50%. The risk-free interest rate is 4% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $50? Use binomial tree method to solve this problem.
A stock price is currently 100. Over each of the next to six months periods it...
A stock price is currently 100. Over each of the next to six months periods it is expected to go up by 10% or down by 10%. the risk free interest rate is 8% per annum. What is the value of the European call and put options with a strike price of 100? Verify that the put call parity is satisfied.
A price on a non-dividend paying stock is currently £50. Over each of the next two...
A price on a non-dividend paying stock is currently £50. Over each of the next two six-month periods the stock is expected to go up by 5% or down by 10%. The risk- free interest rate is 3% per annum with continuous compounding. (a) What is the value of a one-year European call option with a strike price of £48? [10 marks] (b) What is the value of a one-year American call option with a strike price of £48? [4...
Assuming current stock price of ABC Company is $100. Over each of the next two six-month...
Assuming current stock price of ABC Company is $100. Over each of the next two six-month periods, the price is expected to go up by 10% or down by 10% during each six-month period. The risk-free interest rate is 8% per annum with annual compounding. Required: a. Calculate the option premium for a one-year European call option with an exercise price of $80. Show your calculation steps. b. Using the option premium calculated in Part a of Question 9, estimate...
Consider a non-dividend paying stock currently priced at $100 per share. Over any given 6- month...
Consider a non-dividend paying stock currently priced at $100 per share. Over any given 6- month period, the stock price is expected to go up or down by 10%. The continuously compounded risk-free rate is 8% per annum. The stock’s real-world continuously compounded expected return is 16% per annum. a) (5%) Calculate the current price of a 1-year strike-100 European call option on the stock. b) (5%) Calculate the real-world continuously compounded expected return on the call