Question

Let the LFSR be xn+5 = xn + xn+3, where the initial values are x0=0, x1=1,...

  1. Let the LFSR be xn+5 = xn + xn+3, where the initial values are x0=0, x1=1, x2=0, x3=0, x4=0

(a) Compute first 24 bits of the following LFSR.

(b) What is the period?

Homework Answers

Answer #1

here given that

x0=0, x1=1, x2=0, x3=0, x4=0

a) now first 24 bits are :-

x5=x0+x3=0+0=0

x6=x1+x4=1+0=1

x7=x2+x5=0+0=0

x8=x3+x6=0+1=1

x9=x4+x7=0+0=0

x10=x5+x8=0+1=1

x11=x6+x9=1+0=1

x12=x7+x10=0+1=1

x13=x8+x11=1+1=2

x14=x9+x12=0+1=1

x15=x10+x13=1+2=3

x16=x11+x14=1+1=2

x17=x12+x15=1+3=4

x18=x13+x16=2+2=4

x19=x14+x17=1+4=5

x20=x15+x18=3+4=7

x21=x16+x19=2+5=7

x22=x17+x20=4+7=11

x23=x18+x21=4+7=11

x24=x19+x22=5+11=16

x25=x20+x23=7+11=18

b) we see from the above iteration that there is no period.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4...
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4 0.2     ? P = 0.6 0.3    ? 0.5 0.3    ? And initial probability vector a = [0.2, 0.3, ?] a) What are the missing values (?) in the transition matrix an initial vector? b) P(X1 = 0) = c) P(X1 = 0|X0 = 2) = d) P(X22 = 1|X20 = 2) = e) E[X0] = For the Markov Chain with state-space, initial vector, and...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Let n ≥ 2 and x1, x2, ..., xn > 0 be such that x1 +...
Let n ≥ 2 and x1, x2, ..., xn > 0 be such that x1 + x2 + · · · + xn = 1. Prove that √ x1 + √ x2 + · · · + √ xn /√ n − 1 ≤ x1/ √ 1 − x1 + x2/ √ 1 − x2 + · · · + xn/ √ 1 − xn
) Let α be a fixed positive real number, α > 0. For a sequence {xn},...
) Let α be a fixed positive real number, α > 0. For a sequence {xn}, let x1 > √ α, and define x2, x3, x4, · · · by the following recurrence relation xn+1 = 1 2 xn + α xn (a) Prove that {xn} decreases monotonically (in other words, xn+1 − xn ≤ 0 for all n). (b) Prove that {xn} is bounded from below. (Hint: use proof by induction to show xn > √ α for all...
Let Zt ∼ WN(0,σ^2) and Xn = 2 cos(ω)Xn−1 − Xn−2 + Zt Prove that there...
Let Zt ∼ WN(0,σ^2) and Xn = 2 cos(ω)Xn−1 − Xn−2 + Zt Prove that there is no stationary solution. For θ = π/4, let X0 = X1 = 0. Calculate the autocovariance between X4 and X5.
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) =...
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) = 1/ab * (x/a)^{(1-b)/b} 0 <= x <= a ,,,,, b < 1 then, Show the density of the statistic T = X(n) is given by FX(n) (x) = n/ab * (x/a)^{n/(b-1}}   for 0 <= x <= a ; otherwise zero. # using the following P (X(n) < x ) = P (X1 < x, X2 < x, ,,,,,,,,, Xn < x ), Then assume...
1. Consider the Markov chain {Xn|n ≥ 0} associated with Gambler’s ruin with m = 3....
1. Consider the Markov chain {Xn|n ≥ 0} associated with Gambler’s ruin with m = 3. Find the probability of ruin given X0 = i ∈ {0, 1, 2, 3} 2 Let {Xn|n ≥ 0} be a simple random walk on an undirected graph (V, E) where V = {1, 2, 3, 4, 5, 6, 7} and E = {{1, 2}, {1, 3}, {1, 6}, {2, 4}, {4, 6}, {3, 5}, {5, 7}}. Let X0 ∼ µ0 where µ0({i}) =...
The transition probability matrix of a Markov chain {Xn }, n = 1,2,3……. having 3 states...
The transition probability matrix of a Markov chain {Xn }, n = 1,2,3……. having 3 states 1, 2, 3 is P = 0.1 0.5 0.4 0.6 0.2 0.2 0.3 0.4 0.3 * and the initial distribution is P(0) = (0.7, 0.2,0.1) Find: i. P { X3 =2, X2 =3, X1 = 3, X0 = 2} ii. P { X3 =3, X2 =1, X1 = 2, X0 = 1} iii. P{X2 = 3}
Let Ω = {0, 1}^3 , that is, all possible (ordered) triples of zeros and ones....
Let Ω = {0, 1}^3 , that is, all possible (ordered) triples of zeros and ones. Suppose that all outcomes have equal probability. We define three random variables X1, X2, and X3 on this space representing the first, second, and third digit, respectively. We also define X = X1 + X2 + X3. (i) Compute the values (across Ω) of each of the following random variables: E(X|X1), E(E(X|X1)|X2), E(X2|X). (ii) What is the probability mass function of E(X2|X).
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT