Question

) Let α be a fixed positive real number, α > 0. For a sequence {xn},...

) Let α be a fixed positive real number, α > 0. For a sequence {xn}, let x1 > √ α, and define x2, x3, x4, · · · by the following recurrence relation xn+1 = 1 2 xn + α xn (a) Prove that {xn} decreases monotonically (in other words, xn+1 − xn ≤ 0 for all n). (b) Prove that {xn} is bounded from below. (Hint: use proof by induction to show xn > √ α for all n) (c) Show that limn→∞ xn = √ α

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Rudin Ch 3 No 16. Fix a positive number α. Choose x1 > √ α, and...
Rudin Ch 3 No 16. Fix a positive number α. Choose x1 > √ α, and define a sequence x2, x3,. . . by the recursion formula x n+1 = 1 2 (xn + α /xn ). (a) Prove that xn decreases monotonically and that lim n→∞ xn = √ α. Explain how we know xn decreases. Explain the term monotonically
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that...
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that lim n→∞ (x1 + x2 + · · · + xn)/ n = 0 .
Define a sequence (xn)n≥1 recursively by x1 = 1, x2 = 2, and xn = ((xn−1)+(xn−2))/...
Define a sequence (xn)n≥1 recursively by x1 = 1, x2 = 2, and xn = ((xn−1)+(xn−2))/ 2 for n > 2. Prove that limn→∞ xn = x exists and find its value.
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.
Define a sequence (xn)n≥1 recursively by x1 = 1 and xn = 1 + 1 /(xn−1)...
Define a sequence (xn)n≥1 recursively by x1 = 1 and xn = 1 + 1 /(xn−1) for n > 0. Prove that limn→∞ xn = x exists and find its value.
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where...
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where x does not equal zero; prove that lim n→∞ 1/ xn = 1/x
Let n ≥ 2 and x1, x2, ..., xn > 0 be such that x1 +...
Let n ≥ 2 and x1, x2, ..., xn > 0 be such that x1 + x2 + · · · + xn = 1. Prove that √ x1 + √ x2 + · · · + √ xn /√ n − 1 ≤ x1/ √ 1 − x1 + x2/ √ 1 − x2 + · · · + xn/ √ 1 − xn
Let the LFSR be xn+5 = xn + xn+3, where the initial values are x0=0, x1=1,...
Let the LFSR be xn+5 = xn + xn+3, where the initial values are x0=0, x1=1, x2=0, x3=0, x4=0 (a) Compute first 24 bits of the following LFSR. (b) What is the period?
Question about the Mathematical Real Analysis Proof Show that if xn → 0 then √xn →...
Question about the Mathematical Real Analysis Proof Show that if xn → 0 then √xn → 0. Proof. Let ε > 0 be arbitrary. Since xn → 0 there is some N ∈N such that |xn| < ε^2 for all n > N. Then for all n > N we have that |√xn| < ε My question is based on the sequence convergence definition it should be absolute an-a<ε    but here why we can take xn<ε^2 rather than ε?...
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn|...
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn| ≤ θn  for n = 1, 2, . . .. a) Show that for any 1 ≤ n < m one has |xm − xn| ≤ (θn/ 1-θ )*(1 − θ m−n ). Conclude that (xn) is Cauchy b)If lim xn = x* , prove the following error in approximation (the "error in approximation" is the same as error estimation in Taylor Theorem) in t:...