Question

The transition probability matrix of a Markov chain {Xn }, n = 1,2,3……. having 3 states...

The transition probability matrix of a Markov chain {Xn }, n = 1,2,3……. having 3
states 1, 2, 3 is P =
0.1 0.5 0.4
0.6 0.2 0.2
0.3 0.4 0.3
* and the initial distribution is P(0) = (0.7, 0.2,0.1)
Find:
i. P { X3 =2, X2 =3, X1 = 3, X0 = 2}
ii. P { X3 =3, X2 =1, X1 = 2, X0 = 1}
iii. P{X2 = 3}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4...
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4 0.2     ? P = 0.6 0.3    ? 0.5 0.3    ? And initial probability vector a = [0.2, 0.3, ?] a) What are the missing values (?) in the transition matrix an initial vector? b) P(X1 = 0) = c) P(X1 = 0|X0 = 2) = d) P(X22 = 1|X20 = 2) = e) E[X0] = For the Markov Chain with state-space, initial vector, and...
A Markov chain X0, X1, ... on states 0, 1, 2 has the transition probability matrix...
A Markov chain X0, X1, ... on states 0, 1, 2 has the transition probability matrix P = {0.1 0.2 0.7        0.9 0.1   0        0.1 0.8 0.1} and initial distribution p0 = Pr{X0 = 0} = 0.3, p1 = Pr{X0 = 1} = 0.4, and p2 = Pr{X0 = 2} = 0.3. Determine Pr{X0 = 0, X1 = 1, X2 = 2}. Please tell me what it means of the initial distribution why initial distribution p0 = Pr{X0...
Suppose that a production process changes states according to a Markov process whose one-step probability transition...
Suppose that a production process changes states according to a Markov process whose one-step probability transition matrix is given by 0 1 2 3 0 0.3 0.5 0 0.2 1 0.5 0.2 0.2 0.1 2 0.2 0.3 0.4 0.1 3 0.1 0.2 0.4 0.3 a. What is the probability that the process will be at state 2 after the 105th transition given that it is at state 0 after the 102 nd transition? b. What is the probability that the...
Let (pij ) be a stochastic matrix and {Xn|n ≥ 0} be an S-valued stochastic process...
Let (pij ) be a stochastic matrix and {Xn|n ≥ 0} be an S-valued stochastic process with finite dimensional distributions given by P(X0 = i0, X1 = i1, · · · , Xn = in) = P(X0 = i0)pi0i1 · · · pin−1in , n ≥ 0, i0, · · · , in ∈ S. Then {Xn|n ≥ 0} is a Markov chain with transition probability matrix (pij ). Let {Xn|n ≥ 0} be an S-valued Markov chain. Then the...
Given the probability transition matrix of a Markov chain X(n) with states 1, 2 and 3:...
Given the probability transition matrix of a Markov chain X(n) with states 1, 2 and 3: X = [{0.2,0.4,0.4}, {0.3,0.3,0.4}, {0.2,0.6,0.2}] find P(X(10)=2|X(9)=3).
1. Consider the Markov chain {Xn|n ≥ 0} associated with Gambler’s ruin with m = 3....
1. Consider the Markov chain {Xn|n ≥ 0} associated with Gambler’s ruin with m = 3. Find the probability of ruin given X0 = i ∈ {0, 1, 2, 3} 2 Let {Xn|n ≥ 0} be a simple random walk on an undirected graph (V, E) where V = {1, 2, 3, 4, 5, 6, 7} and E = {{1, 2}, {1, 3}, {1, 6}, {2, 4}, {4, 6}, {3, 5}, {5, 7}}. Let X0 ∼ µ0 where µ0({i}) =...
Consider the Markov chain with the state space {1,2,3} and transition matrix P= .2 .4 .4...
Consider the Markov chain with the state space {1,2,3} and transition matrix P= .2 .4 .4 .1 .5 .4 .6 .3 .1 What is the probability in the long run that the chain is in state 1? Solve this problem two different ways: 1) by raising the matrix to a higher power; and 2) by directly computing the invariant probability vector as a left eigenvector.
asasap Consider the Markov chain with state space {1, 2, 3} and transition matrix  ...
asasap Consider the Markov chain with state space {1, 2, 3} and transition matrix   1 2 1 4 1 4 0 1 0 1 4 0 3 4   Find the periodicity of the states. \ Let {Xn|n ≥ 0} be a finite state Markov chain. prove or disprove that all states are positive recurren
Consider a Markov chain with state space {1,2,3} and transition matrix. P= .4 .2 .4 .6...
Consider a Markov chain with state space {1,2,3} and transition matrix. P= .4 .2 .4 .6 0 .4 .2 .5 .3 What is the probability in the long run that the chain is in state 1? Solve this problem two different ways: 1) by raising the matrix to a higher power; and 2) by directly computing the invariant probability vector as a left eigenvector.
Let {Xn|n ≥ 0} is a Markov chain with state space S = {0, 1, 2,...
Let {Xn|n ≥ 0} is a Markov chain with state space S = {0, 1, 2, 3}, X0 = 0, and transition probability matrix (pij ) given by   2 3 1 3 0 0 1 3 2 3 0 0 0 1 4 1 4 1 2 0 0 1 2 1 2   Let τ0 = min{n ≥ 1 : Xn = 0} and B = {Xτ0 = 0}. Compute P(Xτ0+2 = 2|B). . Classify all...