Question

If y1(t)=t-1 is a solution to 2t2y''+3ty'-y=0 for all of t is greater than 0, what...

If y1(t)=t-1 is a solution to 2t2y''+3ty'-y=0 for all of t is greater than 0, what is the set of the solution?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0....
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0. (a) Check that y1(t) = t −1 is a solution to this equation. (b) Find another solution y2(t) such that y1(t) and y2(t) are linearly independent (that is, y1(t) and y2(t) form a fundamental set of solutions for the differential equation)
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find...
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find the function y2(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y2(0)=0, y′2(0)=1. y2(t)= ? Find the Wronskian of these two solutions you have found: W(t)=W(y1,y2). W(t)=?
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' -...
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' - 2y = 0, t > 0 Find another particular solution y2 so that y1 and y2 form a fundamental set of solutions. This means that, after finding a solution y2, you also need to verify that {y1, y2} is really a fundamental set of solutions.
find the general solution of the given differential equation 1. y''−2y'+2y=0 2. y''+6y'+13y=0 find the solution...
find the general solution of the given differential equation 1. y''−2y'+2y=0 2. y''+6y'+13y=0 find the solution of the given initial value problem 1. y''+4y=0, y(0) =0, y'(0) =1 2. y''−2y'+5y=0, y(π/2) =0, y'(π/2) =2 use the method of reduction of order to find a second solution of the given differential equation. 1. t^2 y''+3ty'+y=0, t > 0; y1(t) =t^−1
Find y(t) solution of the initial value problem 3ty^2y'-6y^3-4t^2=0, y(1)=1, t>0
Find y(t) solution of the initial value problem 3ty^2y'-6y^3-4t^2=0, y(1)=1, t>0
Two solutions to the differential equation y00 + 2y0 + y = 0 are y1(t) =...
Two solutions to the differential equation y00 + 2y0 + y = 0 are y1(t) = e−t and y2(t) = te−t. Verify that y1(t) is a solution and show that y1,y2 form a fundamental set of solutions by computing the Wronskian
The nonhomogeneous equation t2 y′′−2 y=29 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular...
The nonhomogeneous equation t2 y′′−2 y=29 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular solution to the nonhomogeneous equation that does not involve any terms from the homogeneous solution.
The nonhomogeneous equation t2 y′′−2 y=19 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular...
The nonhomogeneous equation t2 y′′−2 y=19 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular solution to the nonhomogeneous equation that does not involve any terms from the homogeneous solution. Enter an exact answer. Enclose arguments of functions in parentheses. For example, sin(2x). y(t)=
1) find a solution for a given differential equation y1'=3y1-4y2+20cost ->y1 is not y*1 & y2...
1) find a solution for a given differential equation y1'=3y1-4y2+20cost ->y1 is not y*1 & y2 is not y*2 y2'=y1-2y2 y1(0)=0,y2(0)=8 2)by setting y1=(theta) and y2=y1', convert the following 2nd order differential equation into a first order system of differential equations(y'=Ay+g) (theta)''+4(theta)'+10(theta)=0
y''(t) + 2y'(t) + 3y(t) = 1 y(0) = 1 y'(0) = -1 a)homogenous solution? b)particular...
y''(t) + 2y'(t) + 3y(t) = 1 y(0) = 1 y'(0) = -1 a)homogenous solution? b)particular solution? c)overall solution?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT