Question

Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0....

Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0. (a) Check that y1(t) = t −1 is a solution to this equation. (b) Find another solution y2(t) such that y1(t) and y2(t) are linearly independent (that is, y1(t) and y2(t) form a fundamental set of solutions for the differential equation)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' -...
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' - 2y = 0, t > 0 Find another particular solution y2 so that y1 and y2 form a fundamental set of solutions. This means that, after finding a solution y2, you also need to verify that {y1, y2} is really a fundamental set of solutions.
Consider the differential equation L[y] = y′′ + p(t)y′ + q(t)y = f(t) + g(t), and...
Consider the differential equation L[y] = y′′ + p(t)y′ + q(t)y = f(t) + g(t), and suppose L[yf] = f(t) and L[yg] = g(t). Explain why yp = yf + yg is a solution to L[y] = f + g. Suppose y and y ̃ are both solutions to L[y] = f + g, and suppose {y1, y2} is a fundamental set of solutions to the homogeneous equation L[y] = 0. Explain why y = C1y1 + C2y2 + yf...
Use variation of parameters to find a general solution to the differential equation given that the...
Use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independent solutions to the corresponding homogeneous equation for t>0. y1=et y2=t+1 ty''-(t+1)y'+y=2t2
Two solutions to the differential equation y00 + 2y0 + y = 0 are y1(t) =...
Two solutions to the differential equation y00 + 2y0 + y = 0 are y1(t) = e−t and y2(t) = te−t. Verify that y1(t) is a solution and show that y1,y2 form a fundamental set of solutions by computing the Wronskian
Consider the differential equation x^2y′′ − 3xy′ − 5y = 0. Note that this is not...
Consider the differential equation x^2y′′ − 3xy′ − 5y = 0. Note that this is not a constant coefficient differential equation, but it is linear. The theory of linear differential equations states that the dimension of the space of all homogeneous solutions equals the order of the differential equation, so that a fundamental solution set for this equation should have two linearly fundamental solutions. • Assume that y = x^r is a solution. Find the resulting characteristic equation for r....
Consider the differential equation x2y''+xy'-y=0, x>0. a. Verify that y(x)=x is a solution. b. Find a...
Consider the differential equation x2y''+xy'-y=0, x>0. a. Verify that y(x)=x is a solution. b. Find a second linearly independent solution using the method of reduction of order. [Please use y2(x) = v(x)y1(x)]
Use variation of parameters to find a general solution to the differential equation given that the...
Use variation of parameters to find a general solution to the differential equation given that the functions y 1 and y 2 are linearly independent solutions to the corresponding homogeneous equation for t>0. ty"-(t+1)y'+y=30t^2 ; y1=e^t , y2=t+1 The general solution is y(t)= ?
Consider the second-order homogeneous linear equation y''−6y'+9y=0. (a) Use the substitution y=e^(rt) to attempt to find...
Consider the second-order homogeneous linear equation y''−6y'+9y=0. (a) Use the substitution y=e^(rt) to attempt to find two linearly independent solutions to the given equation. (b) Explain why your work in (a) only results in one linearly independent solution, y1(t). (c) Verify by direct substitution that y2=te^(3t) is a solution to y''−6y'+9y=0. Explain why this function is linearly independent from y1 found in (a). (d) State the general solution to the given equation
Consider the equation y'' + 4y = 0. a) Justify why the functions y1 = cos(4t)...
Consider the equation y'' + 4y = 0. a) Justify why the functions y1 = cos(4t) and y2 = sin(4t) do not constitute a fundamental set of solutions of the above equation. b) Find y1, y2 that constitute a fundamental set of solutions, justifying your answer.
The indicated functions are known linearly independent solutions of the associated homogeneous differential equation on (0,...
The indicated functions are known linearly independent solutions of the associated homogeneous differential equation on (0, ∞). Find the general solution of the given nonhomogeneous equation. x2y'' + xy' + y = sec(ln(x)) y1 = cos(ln(x)), y2 = sin(ln(x))