Question

y''(t) + 2y'(t) + 3y(t) = 1 y(0) = 1 y'(0) = -1 a)homogenous solution? b)particular...

y''(t) + 2y'(t) + 3y(t) = 1

y(0) = 1 y'(0) = -1

a)homogenous solution?

b)particular solution?

c)overall solution?

Homework Answers

Answer #1

Just I have used the rule and eseasi find the required solution to the given differential equation.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve y''+3y'+2y=Delta(t-1)+t^13*Delta(t-0) y(0)=0,y''(0)=0
Solve y''+3y'+2y=Delta(t-1)+t^13*Delta(t-0) y(0)=0,y''(0)=0
Find a particular solution for: y” - 3y’ + 2y = te-3t
Find a particular solution for: y” - 3y’ + 2y = te-3t
Use undetermined coefficients to find the particular solution to 1) y''−2y'+3y= 5t^2+2t+2 yp(t)=? 2) y''+y'−20y= −2550sin(3t)...
Use undetermined coefficients to find the particular solution to 1) y''−2y'+3y= 5t^2+2t+2 yp(t)=? 2) y''+y'−20y= −2550sin(3t) yp(t)=?
Verify that the function ϕ(t)=c1e^−t+c2e^−2t is a solution of the linear equation y′′+3y′+2y=0 for any choice...
Verify that the function ϕ(t)=c1e^−t+c2e^−2t is a solution of the linear equation y′′+3y′+2y=0 for any choice of the constants c1c1 and c2c2. Determine c1c1 and c2c2 so that each of the following initial conditions is satisfied: (a) y(0)=−1,y′(0)=4 (b) y(0)=2,y′(0)=0
y''-2y'-3y=15te^2t y(0)=2 y'(0)=0 find the solution
y''-2y'-3y=15te^2t y(0)=2 y'(0)=0 find the solution
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
y''(t) + 3y'(t) + 2y(t) = 0 if t < π 10 , sin(t) if t...
y''(t) + 3y'(t) + 2y(t) = 0 if t < π 10 , sin(t) if t ≥ π , subject to y(0) = 5, y'(0) = 2
Find the particular solution to y''−4y'+3y=2ety′′-4y′+3y=2e^t
Find the particular solution to y''−4y'+3y=2ety′′-4y′+3y=2e^t
Solve the IVP using the Eigenvalue method. x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 Solve...
Solve the IVP using the Eigenvalue method. x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 Solve the IVP using the Eigenvalue method. x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT