Question

Show that if m is an odd integer, then 5m + 7 is an even integer.

Show that if m is an odd integer, then 5m + 7 is an even integer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Statement 3. If m is an even integer, then 3m + 5 is an odd integer....
Statement 3. If m is an even integer, then 3m + 5 is an odd integer. a. Play with the statement - i.e., Look at/test a few examples. (See if there are any counter-examples.) b. Write a proof of this statement. (Hint: 5 = 4 + 1 = 2(2) + 1) Remark 1. Let's recap some important properties about odd and even that we have seen (in notes and this activity): i. If a and b are even, then ab...
Prove that if an integer is odd, then its square is also odd. Use the result...
Prove that if an integer is odd, then its square is also odd. Use the result to establish that if the square of an integer is known to be even, the integer must be even
Definition of Even: An integer n ∈ Z is even if there exists an integer q...
Definition of Even: An integer n ∈ Z is even if there exists an integer q ∈ Z such that n = 2q. Definition of Odd: An integer n ∈ Z is odd if there exists an integer q ∈ Z such that n = 2q + 1. Use these definitions to prove the following: Prove that zero is not odd. (Proof by contradiction)
If a and b are odd integers, then 3a + 2b is an odd integer. Construct...
If a and b are odd integers, then 3a + 2b is an odd integer. Construct a know show table and formal proof.
Show that even functions have no inverse, but odd functions may.
Show that even functions have no inverse, but odd functions may.
If p = 2k − 1 is prime, show that k is an odd integer or...
If p = 2k − 1 is prime, show that k is an odd integer or k = 2. Hint: Use the difference of squares 22m − 1 = (2m − 1)(2m + 1).
Let m = 2k + 1 be an odd integer. Prove that k + 1 is...
Let m = 2k + 1 be an odd integer. Prove that k + 1 is the multiplicative inverse of 2, mod m.
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer...
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer k such that n < k + 3 ≤ n + 2 . (You can use that facts without proof that even plus even is even or/and even plus odd is odd.)
(Please answer everything and with explanation) Mathematical expressions that evaluate to even and odd integers. In...
(Please answer everything and with explanation) Mathematical expressions that evaluate to even and odd integers. In the expressions below, n is an integer. Indicate whether each expression has a value that is an odd integer or an even integer. Use the definitions of even and odd to justify your answer. You can assume that the sum, difference, or product of two integers is also an integer. (a) 2n + 4 (b) 4n+3 (c) 10n3 + 8n - 4 (d) -2n2...
Use the method of direct proof to prove the following statements. 26. Every odd integer is...
Use the method of direct proof to prove the following statements. 26. Every odd integer is a difference of two squares. (Example 7 = 4 2 −3 2 , etc.) 20. If a is an integer and a^ 2 | a, then a ∈ { −1,0,1 } 5. Suppose x, y ∈ Z. If x is even, then x y is even.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT