Question

Use the method of direct proof to prove the following statements. 26. Every odd integer is...

Use the method of direct proof to prove the following statements.

26. Every odd integer is a difference of two squares. (Example 7 = 4 2 −3 2 , etc.)

20. If a is an integer and a^ 2 | a, then a ∈ { −1,0,1 }

5. Suppose x, y ∈ Z. If x is even, then x y is even.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Give a direct proof that the product of two odd integers is odd. 2. Give...
1. Give a direct proof that the product of two odd integers is odd. 2. Give an indirect proof that if 2n 3 + 3n + 4 is odd, then n is odd. 3. Give a proof by contradiction that if 2n 3 + 3n + 4 is odd, then n is odd. Hint: Your proofs for problems 2 and 3 should be different even though your proving the same theorem. 4. Give a counter example to the proposition: Every...
For each of the statements below, say what method of proof you should use to prove...
For each of the statements below, say what method of proof you should use to prove them. Then say how the proof starts and how it ends. Pretend bonus points for filling in the middle. a. There are no integers x and y such that x is a prime greater than 5 and x = 6y + 3. b. For all integers n , if n is a multiple of 3, then n can be written as the sum of...
Prove the following statements by contradiction a) If x∈Z is divisible by both even and odd...
Prove the following statements by contradiction a) If x∈Z is divisible by both even and odd integer, then x is even. b) If A and B are disjoint sets, then A∪B = AΔB. c) Let R be a relation on a set A. If R = R−1, then R is symmetric.
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Prove the following theorem: For every integer n, there is an even integer k such that...
Prove the following theorem: For every integer n, there is an even integer k such that n ≤ k+1 < n + 2. Your proof must be succinct and cannot contain more than 60 words, with equations or inequalities counting as one word. Type your proof into the answer box. If you need to use the less than or equal symbol, you can type it as <= or ≤, but the proof can be completed without it.
Prove the following theorem: For every integer n, there is an even integer k such that...
Prove the following theorem: For every integer n, there is an even integer k such that n ≤ k+1 < n + 2. Your proof must be succinct and cannot contain more than 60 words, with equations or inequalities counting as one word. Type your proof into the answer box. If you need to use the less than or equal symbol, you can type it as <= or ≤, but the proof can be completed without it.
1. Let n be an integer. Prove that n2 + 4n is odd if and only...
1. Let n be an integer. Prove that n2 + 4n is odd if and only if n is odd? PROVE 2. Use a table to express the value of the Boolean function x(z + yz).
1)Let ? be an integer. Prove that ?^2 is even if and only if ? is...
1)Let ? be an integer. Prove that ?^2 is even if and only if ? is even. (hint: to prove that ?⇔? is true, you may instead prove ?: ?⇒? and ?: ? ⇒ ? are true.) 2) Determine the truth value for each of the following statements where x and y are integers. State why it is true or false. ∃x ∀y x+y is odd.
Use the method of direct proof to show that for any positive 5-digit integer n, if...
Use the method of direct proof to show that for any positive 5-digit integer n, if n is divisible by 9, then some of its digits is divisible by 9 too.
Number Theory Course , I need a full explained answer for those proofs please 1. Prove...
Number Theory Course , I need a full explained answer for those proofs please 1. Prove that for every integer x, x + 4 is odd if and only if x + 7 is even. 2. Prove that for every integer x, if x is odd then there exists an integer y such that x^2 = 8y + 1.