Question

Suppose that the tank of the previous problem is lying on it's side, so that the...

Suppose that the tank of the previous problem is lying on it's side, so that the circular ends are vertical, and that it has the same amount of water as before. How much work is required to pump the water out the top of the tank ( which is now 2 meters above the bottom of the tank). Can you please draw a right triangle if is possible for a better explaination. TIA.

This is the previous problem: A water tank has the shape of an upright cylinder with radius r=1 meter and height 10 meters. If the depth of the water is 5 meters, how much work is required to pump all the water out of the top of the tank?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its...
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its curved side. Using 9.8 m/s^2 for the acceleration due to gravity and 1,000 kg/m^3 as the density of water, Set up the integral for the work required to pump the water out of the tank if: (a) the tank is full of water and it is being pumped out of a 1-meter long vertical spout at the top of the tank. (b) the tank...
A gas station stores its gasoline in a tank under the ground. The tank is a...
A gas station stores its gasoline in a tank under the ground. The tank is a cylinder lying horizontally on its side. (In other words, the tank is not standing vertically on one of its flat ends.) If the radius of the cylinder is 1.5 meters, its length is 3 meters, and its top is 3 meters under the ground, find the total amount of work needed to pump the gasoline out of the tank. (The density of gasoline is...
A water tank has the shape of an inverted cone with a height of 6 meters...
A water tank has the shape of an inverted cone with a height of 6 meters and a radius of 4 meters. The tank is not completely full; at its deepest point, the water is 5 meters deep. How much work is required to pump out the water? Assume the water is pumped out to the level of the top of the tank.
A triangular tank with height 3 meters, width 4 meters and length 8 meters is full...
A triangular tank with height 3 meters, width 4 meters and length 8 meters is full of water. How much work is required to pump the water out through a spout 2.5 meter above the top of the tank? (The density of water is approximately 1000 kg m3 .)
A tank in the shape of a circular paraboloid with top radius 3m and height 9...
A tank in the shape of a circular paraboloid with top radius 3m and height 9 m is filled with water. How much work is required to pump all the water out over the side?
Suppose you have a cylindrical water tank with a height of S meters with a height...
Suppose you have a cylindrical water tank with a height of S meters with a height of 8 meters and a radius of 2 meters and that it stands upright on its circular base and is half-full of water. Determine the work required to empty the tank by pumping the water to a level of 2 meters above the top of the tank.
an inverted right circular gasoline tank of radius 2 ft and height 8ft is buried in...
an inverted right circular gasoline tank of radius 2 ft and height 8ft is buried in the ground so that the circular top is 1 f below the ground (parallel to the ground). Howw much work (in ft-lbs) is required to pump the gasoline occupying the top foot of the tank to aheight 2ft above the ground if the tank id full. (ignore the water the ends in the hose from the pumping process aftertop foot is done being pumped...
A tank of water is 15 feet long and has a cross section in the shape...
A tank of water is 15 feet long and has a cross section in the shape of an equilateral triangle with sides 2 feet long (point of the triangle points directly down). The tank is filled with water to a depth of 9 inches. Determine the amount of work needed to pump all of the water to the top of the tank. Assume that the density of water is 62 lb/ft3.
A tank in the shape of a right circular cylinder, with a height of 15m and...
A tank in the shape of a right circular cylinder, with a height of 15m and a radius of 8m, is full of gasoline. How much work is required to pump all the gasoline over the top of the tank (density of gasoline: ρ = 720kg/m3 and acceleration due to gravity g = 9.8m/s2 ).
a cylindrical tank or radius 2 meters and height 7 meters is filled with water to...
a cylindrical tank or radius 2 meters and height 7 meters is filled with water to a depth of 4 meters. how much work does it take to pump all the water over the top edge of the tank?