Question

A gas station stores its gasoline in a tank under the ground. The tank is a...

A gas station stores its gasoline in a tank under the ground. The tank is a cylinder lying horizontally on its side. (In other words, the tank is not standing vertically on one of its flat ends.) If the radius of the cylinder is 1.5 meters, its length is 3 meters, and its top is 3 meters under the ground, find the total amount of work needed to pump the gasoline out of the tank. (The density of gasoline is 673 kilograms per cubic meter; use g=9.8 m/s2.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that the tank of the previous problem is lying on it's side, so that the...
Suppose that the tank of the previous problem is lying on it's side, so that the circular ends are vertical, and that it has the same amount of water as before. How much work is required to pump the water out the top of the tank ( which is now 2 meters above the bottom of the tank). Can you please draw a right triangle if is possible for a better explaination. TIA. This is the previous problem: A water...
Calculate the work (in joules) required to pump all of the water out of a full...
Calculate the work (in joules) required to pump all of the water out of a full tank. The density of water is 1000 kilograms per cubic meter. Assume the tank (a) is shaped like an inverted cone of radius 5 meters and height 10 meters where the spout is connected to a 2 meter tube extending vertically above the tank. (b) is shaped like a horizontal cylinder of radius R and height H where the spout is connected directly to...
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its...
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its curved side. Using 9.8 m/s^2 for the acceleration due to gravity and 1,000 kg/m^3 as the density of water, Set up the integral for the work required to pump the water out of the tank if: (a) the tank is full of water and it is being pumped out of a 1-meter long vertical spout at the top of the tank. (b) the tank...
A tank is filled with liquid of density 1000 [kg/m3 ]. Its shape is obtained by...
A tank is filled with liquid of density 1000 [kg/m3 ]. Its shape is obtained by rotating the curve y =√x, 0 ≤ x ≤ 4, around the y-axis. Find the work that is required to pump all the liquid out of the tank, from the top of the tank. All the lengths are in units of meter [m]. Do not forget to use gravitational constant g = 9.8[m/s2 ].