Question

Suppose you have a cylindrical water tank with a height of S meters with a height...

Suppose you have a cylindrical water tank with a height of S meters with a height of 8 meters and a radius of 2 meters and that it stands upright on its circular base and is half-full of water. Determine the work required to empty the tank by pumping the water to a level of 2 meters above the top of the tank.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a cylindrical tank or radius 2 meters and height 7 meters is filled with water to...
a cylindrical tank or radius 2 meters and height 7 meters is filled with water to a depth of 4 meters. how much work does it take to pump all the water over the top edge of the tank?
You have a spherical water tank that is exactly half-full. In order to empty the tank,...
You have a spherical water tank that is exactly half-full. In order to empty the tank, the water must be sent through a spout at the top that extends 2 meters above the top of the tank. The radius of the tank is 9 meters. How much work is required to empty the tank? Include every step and write your solution out very clearly.
A tank in the shape of an inverted right circular cone has height 88 meters and...
A tank in the shape of an inverted right circular cone has height 88 meters and radius 1616 meters. It is filled with 22 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. Note: the density of hot chocolate is δ=1450kg/m3
A tank in the shape of an inverted right circular cone has height 9 meters and...
A tank in the shape of an inverted right circular cone has height 9 meters and radius 13 meters. It is filled with 3 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. Note: the density of hot chocolate is δ=1480kg/m^3
A water tank has the shape of an inverted cone with a height of 6 meters...
A water tank has the shape of an inverted cone with a height of 6 meters and a radius of 4 meters. The tank is not completely full; at its deepest point, the water is 5 meters deep. How much work is required to pump out the water? Assume the water is pumped out to the level of the top of the tank.
A tank in the shape of an inverted right circular cone has height 6 meters and...
A tank in the shape of an inverted right circular cone has height 6 meters and radius 2 meters. It is filled with 5 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. The density of hot chocolate is \delta = 1090kg/m^3 Your answer must include the correct units.
A tank in the shape of an inverted right circular cone has height 7 meters and...
A tank in the shape of an inverted right circular cone has height 7 meters and radius 3 meters. It is filled with 6 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. The density of hot chocolate is δ=1080 kg/m^3. Your answer must include the correct units.
A tank in the shape of an inverted right circular cone has height 7 meters and...
A tank in the shape of an inverted right circular cone has height 7 meters and radius 3 meters. It is filled with 6 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. The density of hot chocolate is δ=1080 kg/m^3. Your answer must include the correct units. NOTE: 112174.092J is incorrect?
Compute the work required to drain, from the top, a cylindrical water tank, with height =...
Compute the work required to drain, from the top, a cylindrical water tank, with height = 2m and radius = 1m, which is full of water.
Suppose that the tank of the previous problem is lying on it's side, so that the...
Suppose that the tank of the previous problem is lying on it's side, so that the circular ends are vertical, and that it has the same amount of water as before. How much work is required to pump the water out the top of the tank ( which is now 2 meters above the bottom of the tank). Can you please draw a right triangle if is possible for a better explaination. TIA. This is the previous problem: A water...