Question

Kernels on real vectors Let x,z ∈ Rn, show the following is valid kernel: Gaussian or...

Kernels on real vectors

Let x,z ∈ Rn, show the following is valid kernel:

Gaussian or RBF: k(x, z) = exp(-α ||x - z||2), for α > 0.

Homework Answers

Answer #1

Please give me a like...................

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let two independent random vectors x and z have Gaussian distributions: p(x) = N(x|µx,Σx), and p(z)...
Let two independent random vectors x and z have Gaussian distributions: p(x) = N(x|µx,Σx), and p(z) = N(z|µz,Σz). Now consider y = x + z. Use the results for Gaussian linear system to find the distribution p(y) for y. Hint. Consider p(x) and p(y|x). Please prove for it rather than directly giving the result.
Show the following: a) Let there be Y with the cumulative distribution function F(y). Let F(Y)=Z....
Show the following: a) Let there be Y with the cumulative distribution function F(y). Let F(Y)=Z. Show that Z~U(0,1) for F(y). b) Let X~U(0,1), and let Y := -ln(X). Show that Y~exp(1)
Let the vectors a and b be in X = Span{x1,x2,x3}. Assume all vectors are in...
Let the vectors a and b be in X = Span{x1,x2,x3}. Assume all vectors are in R^n for some positive integer n. 1. Show that 2a - b is in X. Let x4 be a vector in Rn that is not contained in X. 2. Show b is a linear combination of x1,x2,x3,x4. Edit: I don't really know what you mean, "what does the question repersent." This is word for word a homework problem I have for linear algebra.
Let E be an n×n matrix, and letU= {xE:x∈Rn} (where x∈Rn is written as arow vector)....
Let E be an n×n matrix, and letU= {xE:x∈Rn} (where x∈Rn is written as arow vector). Show that the following are equivalent. (a) E^2 = E = E^T (T means transpose). (b) (u − uE) · (vE) = 0 for all u, v ∈ Rn. (c) projU(v) = vE for all v ∈ Rn.
Is the following a valid probability density function? f(x) = c*exp(-(max(1,x^2)) (for all values of x...
Is the following a valid probability density function? f(x) = c*exp(-(max(1,x^2)) (for all values of x in the Real plane) If not, for what value of c (c = constant) this function will be a valid PDF?
Let x ∼ N(μ,σ) and z = x−μ/σ. Show that a. E{z} = 0 b. E{(z...
Let x ∼ N(μ,σ) and z = x−μ/σ. Show that a. E{z} = 0 b. E{(z − E{z})2} = 1.
Show the vectors [x y z] where xyz=0 is a subspace V of R^3. is it...
Show the vectors [x y z] where xyz=0 is a subspace V of R^3. is it closed under additon? is it closed under scalar multiplication?
Let u, v, and w be vectors in Rn. Determine which of the following statements are...
Let u, v, and w be vectors in Rn. Determine which of the following statements are always true. (i) If ||u|| = 4, ||v|| = 5, and ?||u + v|| = 8, then u?·?v = 4. (ii) If ||u|| = 2 and ||v|| = 3, ?then |u?·?v| ? 5. (iii) The expression (v?·?w)u is both meaningful and defined. (A) (ii) and (iii) only (B) (ii) only (C) none of them (D) all of them (E) (i) only (F) (i) and...
Use Gaussian elimination to find the complete solution to the following system of​ equations, or show...
Use Gaussian elimination to find the complete solution to the following system of​ equations, or show that none exists. {-x + y + z = -2 {-x + 5y -19z = -30 { 7x - 5y - 17z = 0 Find the​ row-echelon form of the matrix for the given system of equations. ​(Do not include the vertical bar in the augmented​ matrix.) Select the correct choice below​ and, if​ necessary, fill in the answer boxes to complete your choice....
Problem 10. Let F = <y, z − x, 0> and let S be the surface...
Problem 10. Let F = <y, z − x, 0> and let S be the surface z = 4 − x^2 − y^2 for z ≥ 0, oriented by outward-pointing normal vectors. a. Calculate curl(F). b. Calculate Z Z S curl(F) · dS directly, i.e., evaluate it as a surface integral. c. Calculate Z Z S curl(F) · dS using Stokes’ Theorem, i.e., evaluate instead the line integral I ∂S F · ds.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT