Question

Let E be an n×n matrix, and letU= {xE:x∈Rn} (where x∈Rn is written as arow vector)....

Let E be an n×n matrix, and letU= {xE:x∈Rn} (where x∈Rn is written as arow vector). Show that the following are equivalent.
(a) E^2 = E = E^T (T means transpose).
(b) (u − uE) · (vE) = 0 for all u, v ∈ Rn.

(c) projU(v) = vE for all v ∈ Rn.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 3.2 Let H ∈ Rn×n be symmetric and idempotent, hence a projection matrix. Let x...
Problem 3.2 Let H ∈ Rn×n be symmetric and idempotent, hence a projection matrix. Let x ∼ N(0,In). (a) Let σ > 0 be a positive number. Find the distribution of σx. (b) Let u = Hx and v = (I −H)x and find the joint distribution of (u,v). 1 (c) Someone claims that u and v are independent. Is that true? (d) Let µ ∈ Im(H). Show that Hµ = µ. (e) Assume that 1 ∈ Im(H) and find...
Let A be an m×n matrix, x a vector in Rn, and b a vector in...
Let A be an m×n matrix, x a vector in Rn, and b a vector in Rm. Show that if x1 in Rn is a solution to Ax=b and x2 is a solution to Ax=⃗0, then x1 +x2 is a solution to Ax=b.
Let X be a not-random nxk Matrix. Let Y=Xbeta +u, with E(u)=0 a Vector beta is...
Let X be a not-random nxk Matrix. Let Y=Xbeta +u, with E(u)=0 a Vector beta is a true value if E(y)=Xbeta Show that two solutions beta1_hat and beta2_hat of the normal equations fulfill the following equation Xbeta1_hat=Xbeta2_hat if rank(X)=k, show that the normal equations have a unique solution Normal equations: XtXbeta=XtY
Let U, V be a pair of subspaces of Rn and U +V the summationspace. Suppose...
Let U, V be a pair of subspaces of Rn and U +V the summationspace. Suppose that U ∩ V = {0}. Prove that from every vector U + V can be written as the sum of a vector from U and a vector from V.
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix...
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix theorem below and show that all 3 statements are true or false. Make sure to clearly explain and justify your work. A= -1 , 7, 9 7 , 7, 10 -3, -6, -4 The equation A has only the trivial solution. 5. The columns of A form a linearly independent set. 6. The linear transformation x → Ax is one-to-one. 7. The equation Ax...
Let E be the mxm matrix that extracts the "even part" of an m-vector; Ex=(x+Fx)/2 where...
Let E be the mxm matrix that extracts the "even part" of an m-vector; Ex=(x+Fx)/2 where F is the mxm matrix that flips {x1, ...,xm}* to {xm, ..., x1}*. What is (Ex)^2. I'm lost on how to calculate this.
Let A be an n × n matrix, v a column vector, and suppose {v, Av,...
Let A be an n × n matrix, v a column vector, and suppose {v, Av, . . . , An−1v} is linearly independent. Prove that if B is any matrix that commutes with A, then B is a polynomial in A.
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉 ∈ R for x, y ∈ V . (a) (3points) Let λ∈R with λ>0. Show that 〈x,y〉′ = λ〈x,y〉, for x,y ∈ V, (b) (2 points) Let T : V → V be a linear operator, such that 〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V. Show that T is one-to-one. (c) (2 points) Recall that the norm of a vector x ∈ V...
Let P(u) be the linear function mapping vector x ∈ Rn to the difference between x...
Let P(u) be the linear function mapping vector x ∈ Rn to the difference between x and the projection of xon the line L(0,u) (the line through zero with direction u.) What is the smallest and second smallest eigenvalue of P(u)?
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be...
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be in R 17 , c be in R 20, and 0 be the vector with all zero entries. Show that each of the following statements implies the other. (a) Bx = 0 has only the trivial solution x = 0 n R 17, then (b) If Bx = c has a solution for some vector c in R 20, then the solution is unique.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT