Question

Problem 10. Let F = <y, z − x, 0> and let S be the surface...

Problem 10. Let F = <y, z − x, 0> and let S be the surface z = 4 − x^2 − y^2 for z ≥ 0, oriented by outward-pointing normal vectors.

a. Calculate curl(F).

b. Calculate Z Z S curl(F) · dS directly, i.e., evaluate it as a surface integral.

c. Calculate Z Z S curl(F) · dS using Stokes’ Theorem, i.e., evaluate instead the line integral I ∂S F · ds.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Stokes' Theorem to evaluate    S curl F · dS. F(x, y, z) = x2...
Use Stokes' Theorem to evaluate    S curl F · dS. F(x, y, z) = x2 sin(z)i + y2j + xyk, S is the part of the paraboloid z = 1 − x2 − y2 that lies above the xy-plane, oriented upward.
Calculate the line integral of the vector field ?=〈?,?,?2+?2〉F=〈y,x,x2+y2〉 around the boundary curve, the curl of...
Calculate the line integral of the vector field ?=〈?,?,?2+?2〉F=〈y,x,x2+y2〉 around the boundary curve, the curl of the vector field, and the surface integral of the curl of the vector field. The surface S is the upper hemisphere ?2+?2+?2=36, ?≥0x2+y2+z2=36, z≥0 oriented with an upward‑pointing normal. (Use symbolic notation and fractions where needed.) ∫?⋅??=∫CF⋅dr= curl(?)=curl(F)= ∬curl(?)⋅??=∬Scurl(F)⋅dS=
use stoke's theorem to find ∬ (curl F) * dS where F (x,y,z) = <y, 2x,...
use stoke's theorem to find ∬ (curl F) * dS where F (x,y,z) = <y, 2x, x+y+z> and and S is the upper half of the sphere x^2 + y^2 +z^2 =1, oriented outward
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 4zk, S is the hemisphere x^2 + y2^ + z^2 = 4, z ≥ 0, oriented downward
Use Stokes" Theorem to evaluate (F-dr where F(x, y, z)=(-y , x-z , 0) and the...
Use Stokes" Theorem to evaluate (F-dr where F(x, y, z)=(-y , x-z , 0) and the surface S is the part of the paraboloid : z = 4- x^2 - y^2 that lies above the xy-plane. Assume C is oriented counterclockwise when viewed from above.
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector...
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i + y j + 9 k S is the boundary of the region enclosed by the cylinder x2 + z2 = 1 and the planes y = 0 and x + y =...
Use Stokes' Theorem to evaluate the surface integral ∬ G curl F ⋅ n d S...
Use Stokes' Theorem to evaluate the surface integral ∬ G curl F ⋅ n d S where F ( x , y , z ) = ( z 2 − y ) i + ( x + y z ) j + x z k , G is the surface G = { ( x , y , z ) | z = 1 − x 2 − y 2 , z ≥ 0 } and n is the upward...
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 2zk, S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0, oriented downward
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x2i + y2j + z2k S is the boundary of the solid half-cylinder0 ≤ z ≤ 16 − y2 , 0 ≤ x ≤ 5
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xz i + x j + y k S is the hemisphere x2 + y2 + z2 = 4, y ≥ 0, oriented in the direction of the positive y-axis. Incorrect: Your answer is incorrect.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT