Question

suppose A is a 6 x 4 matrix and b is a 4 x 6 matrix....

suppose A is a 6 x 4 matrix and b is a 4 x 6 matrix. Describe precisely why the 4 x 4 matrix AB can be invertible.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that A is a 6 x 6 matrix that can be written as a product...
Suppose that A is a 6 x 6 matrix that can be written as a product of matrices A = BC where B is 6 x 4 and C is 4 x 6. Prove that A is not invertible?
I am having a general question for linear equation. Suppose we have matrix A, B,x where...
I am having a general question for linear equation. Suppose we have matrix A, B,x where A is non-invertible and A,B,x are 3x3 matrices. If we have Ax= B mod 26, then how do we solve for x?
8. Consider a 4 × 2 matrix A and a 2 × 5 matrix B ....
8. Consider a 4 × 2 matrix A and a 2 × 5 matrix B . (a) What are the possible dimensions of the null space of AB? Justify your answer. (b) What are the possible dimensions of the range of AB Justify your answer. (c) Can the linear transformation define by A be one to one? Justify your answer. (d) Can the linear transformation define by B be onto? Justify your answer.
Suppose A and B are invertible matrices, with A being m x m and B being...
Suppose A and B are invertible matrices, with A being m x m and B being n x n. For any m x n matrix C and any n x m matrix D, show that : a) (A + CBD)-1 = A-1- A-1C(B-1 + DA-1C)-1DA-1 b) If A, B and A + B are all m x m invertible matrices, then deduce from (a) above that (A + B)-1 = A-1 - A-1(B-1 + A-1)-1A-1
Suppose that x = Verticle matrix of (1, x2, x3) where x3 = α1 + α2x2....
Suppose that x = Verticle matrix of (1, x2, x3) where x3 = α1 + α2x2. Show that E(xx') is not invertible.
True or False (5). Suppose the matrix A and B are both invertible, then (A +...
True or False (5). Suppose the matrix A and B are both invertible, then (A + B)−1 = A−1 + B−1 . (6). The linear system ATAx = ATb is always consistent for any A ∈ Rm×n, b ∈Rm . (7). For any matrix A ∈Rm×n , it satisfies dim(Nul(A)) = n−rank(A). (8). The two linear systems Ax = 0 and ATAx = 0 have the same solution set. (9). Suppose Q ∈Rn×n is an orthogonal matrix, then the row...
Prove the following: Given k x m matrix A, m x n matrix B. Then rank(A)=m...
Prove the following: Given k x m matrix A, m x n matrix B. Then rank(A)=m --> rank(AB)=rank(B)
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix...
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix theorem below and show that all 3 statements are true or false. Make sure to clearly explain and justify your work. A= -1 , 7, 9 7 , 7, 10 -3, -6, -4 The equation A has only the trivial solution. 5. The columns of A form a linearly independent set. 6. The linear transformation x → Ax is one-to-one. 7. The equation Ax...
let A,B be invertible matrix (AB^-1 - I)^-1 = 4B^TA^-1 Find A inverse, which should have...
let A,B be invertible matrix (AB^-1 - I)^-1 = 4B^TA^-1 Find A inverse, which should have an expression in terms of B
1.Let A be an n x n matrix. Which of these conditions show that A is...
1.Let A be an n x n matrix. Which of these conditions show that A is invertible? •det A= 0 • dim (NulA) = 1 •ColA=R^n •A^T is invertible •an n x n matrix, D, exists where AD=In
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT