Question

1.Let A be an n x n matrix. Which of these conditions show that A is...

1.Let A be an n x n matrix. Which of these conditions show that A is invertible?

•det A= 0
• dim (NulA) = 1
•ColA=R^n
•A^T is invertible
•an n x n matrix, D, exists where AD=In

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be an n×n matrix. If there exists k > n such that A^k =0,then...
Let A be an n×n matrix. If there exists k > n such that A^k =0,then (a) prove that In − A is nonsingular, where In is the n × n identity matrix; (b) show that there exists r ≤ n such that A^r= 0.
Let A be an m × n matrix, and Q be an n × n invertible...
Let A be an m × n matrix, and Q be an n × n invertible matrix. (1) Show that R(A) = R(AQ), and use this result to show that rank(AQ) = rank(A); (2) Show that rank(AQ) = rank(A).
Let A be a (n × n) matrix. Show that A and AT have the same...
Let A be a (n × n) matrix. Show that A and AT have the same characteristic polynomials (and therefore the same eigenvalues). Hint: For any (n×n) matrix B, we have det(BT) = det(B). Remark: Note that, however, it is generally not the case that A and AT have the same eigenvectors!
Which of the following are NECESSARY CONDITIONS for an n x n matrix A to be...
Which of the following are NECESSARY CONDITIONS for an n x n matrix A to be diagonalizable? i) A has n distinct eigenvalues ii) A has n linearly independent eigenvectors iii) The algebraic multiplicity of each eigenvalue equals its geometric multiplicity iv) A is invertible v) The columns of A are linearly independent NOTE: The answer is more than 1 option.
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix...
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix theorem below and show that all 3 statements are true or false. Make sure to clearly explain and justify your work. A= -1 , 7, 9 7 , 7, 10 -3, -6, -4 The equation A has only the trivial solution. 5. The columns of A form a linearly independent set. 6. The linear transformation x → Ax is one-to-one. 7. The equation Ax...
True or false; for each of the statements below, state whether they are true or false....
True or false; for each of the statements below, state whether they are true or false. If false, give an explanation or example that illustrates why it's false. (a) The matrix A = [1 0] is not invertible.                               [1 -2] (b) Let B be a matrix. The rowspaces row (B), row (REF(B)) and row (RREF(B)) are all equivalent. (c) Let C be a 5 x 7 matrix with nullity 3. The rank of C is 2. (d) Let D...
Let A be an n by n matrix, with real valued entries. Suppose that A is...
Let A be an n by n matrix, with real valued entries. Suppose that A is NOT invertible. Which of the following statements are true? ?Select ALL correct answers.? The columns of A are linearly dependent. The linear transformation given by A is one-to-one. The columns of A span Rn. The linear transformation given by A is onto Rn. There is no n by n matrix D such that AD=In. None of the above.
Let A be an invertible matrix. Show that A∗ is invertible, and that (A∗ ) −1...
Let A be an invertible matrix. Show that A∗ is invertible, and that (A∗ ) −1 = (A−1 ) ∗ .
Let A be an n×n nonsingular matrix. Denote by adj(A) the adjugate matrix of A. Prove:...
Let A be an n×n nonsingular matrix. Denote by adj(A) the adjugate matrix of A. Prove: 1)   det(adj(A)) = (det(A)) 2)    adj(adj(A)) = (det(A))n−2A
Let A be an n x M matrix and let T(x) =A(x). Prove that T: R^m...
Let A be an n x M matrix and let T(x) =A(x). Prove that T: R^m R^n is a linear transformation
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT