Question

Prove the following: Given k x m matrix A, m x n matrix B. Then rank(A)=m...

Prove the following: Given k x m matrix A, m x n matrix B. Then rank(A)=m --> rank(AB)=rank(B)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A,B be a m by n matrix, Prove that |rank(A)-rank(B)|<=rank(A-B)
Let A,B be a m by n matrix, Prove that |rank(A)-rank(B)|<=rank(A-B)
Suppose A ∈ Mm×n(R) is a matrix with rank m. Show that there is an n...
Suppose A ∈ Mm×n(R) is a matrix with rank m. Show that there is an n × m matrix B such that AB = Im. (Hint: Try to determine columns of B one by one
In the system AX=b, where A is m x n matrix and rank of A is...
In the system AX=b, where A is m x n matrix and rank of A is m, you are given n vectors and among them p vectors are linearly dependent (p > m). Please write down the procedure to reduce the number of dependent vector by 1.
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M....
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M. 1. Show that the diagonal of an anti-symmetric matrix are zero 2. suppose that A,B are symmetric n × n-matrices. Prove that AB is symmetric if AB = BA. 3. Let A be any n×n-matrix. Prove that A+A^t is symmetric and A - A^t antisymmetric. 4. Prove that every n × n-matrix can be written as the sum of a symmetric and anti-symmetric matrix.
Suppose we are given a system Ax = b, with A an n × m matrix....
Suppose we are given a system Ax = b, with A an n × m matrix. What can you say about the solution set of the system in the following cases? Provide a brief explanation. (i) rank(A) < n (ii) rank(A) = n (iii) rank(A) < m (iv) rank(A) = m
Let A be square matrix prove that A^2 = I if and only if rank(I+A)+rank(I-A)=n
Let A be square matrix prove that A^2 = I if and only if rank(I+A)+rank(I-A)=n
4.4.3. Suppose A and B are n × n matrices. Prove that, if AB is invertible,...
4.4.3. Suppose A and B are n × n matrices. Prove that, if AB is invertible, then A and B are both invertible. Do not use determinants, since we have not seen them yet. Hint: Use Lemma 4.4.4. Lemma 4.4.4. If A ∈ Mm,n(F) and B ∈ Mn,k(F), then rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B).
Can i make conclusions about m x n matrix with rank r with (n-r) values and...
Can i make conclusions about m x n matrix with rank r with (n-r) values and it's solution number? Is there any other relations between rank of a matrix and avalaible solutions?
For n>=3 given the n x n matrix A with elements: A_ij=(i+j-2)^2. Determine the rank of...
For n>=3 given the n x n matrix A with elements: A_ij=(i+j-2)^2. Determine the rank of A.
Let A m×n be a given matrix with m > n. If the time taken to...
Let A m×n be a given matrix with m > n. If the time taken to compute the determinant of a square matrix of size j is j to the power 3, find upper bound on the a) total time taken to find the rank of A using determinants b) number of additions and multiplications required to determine the rank using the elimination procedure.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT