Question

True or False (5). Suppose the matrix A and B are both invertible, then (A +...

True or False

(5). Suppose the matrix A and B are both invertible, then (A + B)−1 = A−1 + B−1

. (6). The linear system ATAx = ATb is always consistent for any A ∈ Rm×n, b ∈Rm .

(7). For any matrix A ∈Rm×n , it satisfies dim(Nul(A)) = n−rank(A).

(8). The two linear systems Ax = 0 and ATAx = 0 have the same solution set.

(9). Suppose Q ∈Rn×n is an orthogonal matrix, then the row echelon form of Q has n leading variables.

(10). If matrix A ∈Rm×n, then rank(A) ≤ max{m,n}.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Answer all of the questions true or false: 1. a) If one row in an echelon...
Answer all of the questions true or false: 1. a) If one row in an echelon form for an augmented matrix is [0 0 5 0 0] b) A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax=b has at least one solution. c) The solution set of b is the set of all vectors of the form u = + p + vh where vh is any solution...
This is a TRUE-FALSE Question with justification. If Q is an orthogonal n×n matrix, then Row(Q)...
This is a TRUE-FALSE Question with justification. If Q is an orthogonal n×n matrix, then Row(Q) = Col(Q). The Answer to this is TRUE. I want to know a solid reasoning/explanation for it. In one of the answers, it says that " Since Q is orthogonal, QTQ = I, so Q is invertible, hence Row(Q) = Col(Q) = Rn. But my question is: Why is it that for an invertible matrix, Row(Q) = Col (Q) ? Any other explanation that...
Suppose that A is an invertible n by n matrix, with real valued entries. Which of...
Suppose that A is an invertible n by n matrix, with real valued entries. Which of the following statements are true? Select ALL correct answers. Note: three submissions are allowed for this question. A is row equivalent to the identity matrix In.A has fewer than n pivot positions.The equation Ax=0 has only the trivial solution.For some vector b in Rn, the equation Ax=b has no solution.There is an n by n matrix C such that CA=In.None of the above.
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix...
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix theorem below and show that all 3 statements are true or false. Make sure to clearly explain and justify your work. A= -1 , 7, 9 7 , 7, 10 -3, -6, -4 The equation A has only the trivial solution. 5. The columns of A form a linearly independent set. 6. The linear transformation x → Ax is one-to-one. 7. The equation Ax...
True/ false a- If the last row in an REF of an augmented matrix is [0...
True/ false a- If the last row in an REF of an augmented matrix is [0 0 0 4 0], then the associated linear system is inconsistent. b-The equation Ax=b is consistent if the augmented matrix [A b] has a pivot position in every row. c-The set Span{v} for a nonzero v is always a line that may or may not pass through the origin.
Say if it is true or false and explain why a if a matrix A has...
Say if it is true or false and explain why a if a matrix A has row echelon form shown below, then dim(row(A))= 2 the matrix: [1 0 0 ]^t [1 1 0 ]^t [-2 8/3 0 ]^t [4 -10/3 0 ]^t
Let A be an m×n matrix, x a vector in Rn, and b a vector in...
Let A be an m×n matrix, x a vector in Rn, and b a vector in Rm. Show that if x1 in Rn is a solution to Ax=b and x2 is a solution to Ax=⃗0, then x1 +x2 is a solution to Ax=b.
True or false; for each of the statements below, state whether they are true or false....
True or false; for each of the statements below, state whether they are true or false. If false, give an explanation or example that illustrates why it's false. (a) The matrix A = [1 0] is not invertible.                               [1 -2] (b) Let B be a matrix. The rowspaces row (B), row (REF(B)) and row (RREF(B)) are all equivalent. (c) Let C be a 5 x 7 matrix with nullity 3. The rank of C is 2. (d) Let D...
Given that A and B are n × n matrices and T is a linear transformation....
Given that A and B are n × n matrices and T is a linear transformation. Determine which of the following is FALSE. (a) If AB is not invertible, then either A or B is not invertible. (b) If Au = Av and u and v are 2 distinct vectors, then A is not invertible. (c) If A or B is not invertible, then AB is not invertible. (d) If T is invertible and T(u) = T(v), then u =...
Suppose A and B are invertible matrices, with A being m x m and B being...
Suppose A and B are invertible matrices, with A being m x m and B being n x n. For any m x n matrix C and any n x m matrix D, show that : a) (A + CBD)-1 = A-1- A-1C(B-1 + DA-1C)-1DA-1 b) If A, B and A + B are all m x m invertible matrices, then deduce from (a) above that (A + B)-1 = A-1 - A-1(B-1 + A-1)-1A-1