Question

Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0...

Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0 for every x ∈ [a,b].

1) Show that either f(x) > 0 for every x ∈ [a,b] or f(x) < 0 for every x ∈ [a,b].

2) Assume that f(x) > 0 for every x ∈ [a,b] and prove that there exists ε > 0 such that f(x) ≥ ε for all x ∈ [a,b].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
6. Let a < b and let f : [a, b] → R be continuous. (a)...
6. Let a < b and let f : [a, b] → R be continuous. (a) Prove that if there exists an x0 ∈ [a, b] for which f(x0) 6= 0, then Z b a |f(x)|dxL > 0. (b) Use (a) to conclude that if Z b a |f(x)|dx = 0, then f(x) := 0 for all x ∈ [a, b].
Let f : R → R be a bounded differentiable function. Prove that for all ε...
Let f : R → R be a bounded differentiable function. Prove that for all ε > 0 there exists c ∈ R such that |f′(c)| < ε.
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
Let a < b, a, b, ∈ R, and let f : [a, b] → R...
Let a < b, a, b, ∈ R, and let f : [a, b] → R be continuous such that f is twice differentiable on (a, b), meaning f is differentiable on (a, b), and f' is also differentiable on (a, b). Suppose further that there exists c ∈ (a, b) such that f(a) > f(c) and f(c) < f(b). prove that there exists x ∈ (a, b) such that f'(x)=0. then prove there exists z ∈ (a, b) such...
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and...
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and f'(x)<= 1 for all x2 ㅌ (-a, a). If f(a) = a and f(-a) =-a. Show that f(0) = 0. Hint: Consider the two cases f(0) < 0 and f(0) > 0. Use mean value theorem to prove that these are impossible cases.
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous...
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous R at [a, b] and f decreasing on [b, ∞). Prove that f is bounded above.
. Let f and g : [0, 1] → R be continuous, and assume f(x) =...
. Let f and g : [0, 1] → R be continuous, and assume f(x) = g(x) for all x < 1. Does this imply that f(1) = g(1)? Provide a proof or a counterexample.
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
Let f : R → R be a function satisfying |f(x) − f(y)| ≤ 3|x −...
Let f : R → R be a function satisfying |f(x) − f(y)| ≤ 3|x − y|^{1/2} for all x, y ∈ R. Apply E − δ definition to show that f is uniformly continuous in R.
For the given function: f [0; 3]→R is continuous, and all of its values are rational...
For the given function: f [0; 3]→R is continuous, and all of its values are rational numbers. It is also known that f(0) = 1. Can you find f(3)?Justification b) Let [x] denote the smallest integer, not larger than x. For instance,[2.65] = 2 = [2], [−1.5] =−2. Caution: [x] is not equal to |x|! Find the points at which the function f : R→R. f(x) = cos([−x] + [x]) has or respectively, does not have a derivative.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT