Question

Find the minimal polynomial 0 in a vector space V given that the vector space is...

Find the minimal polynomial 0 in a vector space V given that the vector space is in an algebra of dimension one or more.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V be an n-dimensional vector space and W a vector space that is isomorphic to...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" the Definiton of isomorphic:  Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" The Definition of dimenion: the...
Let V be a vector space of dimension n > 0, show that (a) Any set...
Let V be a vector space of dimension n > 0, show that (a) Any set of n linearly independent vectors in V forms a basis. (b) Any set of n vectors that span V forms a basis.
5. Let V be a finite-dimension vector space and T : V → V be linear....
5. Let V be a finite-dimension vector space and T : V → V be linear. Show that V = im(T) + ker(T) if and only if im(T) ∩ ker(T) = {0}.
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n
Let B be a (finite) basis for a vector space V. Suppose that v is a...
Let B be a (finite) basis for a vector space V. Suppose that v is a vector in V but not in B. Prove that, if we enlarge B by adding v to it, we get a set that cannot possibly be a basis for V. (We have not yet formally defined dimension, so don't use that idea in your proof.)
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial...
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial is vector space over the field R under usual polynomial addition and scalar multiplication. Further, find the basis for the space of polynomial p(x) of degree ≤ 3. Find a basis for the subspace with p(1) = 0.
Verify this axiom of a vector space. Vector space: A subspace of R2: the set of...
Verify this axiom of a vector space. Vector space: A subspace of R2: the set of all dimension-2 vectors [x; y] whose entries x and y are odd integers. Axiom 1: The sum u + v is in V.
Suppose that, in some vector space V , a vector u ∈V has the property that...
Suppose that, in some vector space V , a vector u ∈V has the property that u+v = v for some v ∈ V . Prove that u = 0.
Let V be an n-dimensional vector space. Let W and W2 be unequal subspaces of V,...
Let V be an n-dimensional vector space. Let W and W2 be unequal subspaces of V, each of dimension n - 1. Prove that V =W1 + W2 and dim(Win W2) = n - 2.
A vector space V and a subset S are given. Determine if S is a subspace...
A vector space V and a subset S are given. Determine if S is a subspace of V by determining which conditions of the definition of a subspace are satisfied. (Select all that apply.) V = C[−4, 4] and S = P. S contains the zero vector. S is closed under vector addition. S is closed under scalar multiplication. None of these