Question

Verify this axiom of a vector space. Vector space: A subspace of R2: the set of...

Verify this axiom of a vector space.

Vector space:

A subspace of R2: the set of all dimension-2 vectors [x; y] whose entries x and y are odd integers.

Axiom 1:

The sum u + v is in V.

Homework Answers

Answer #1

we take two vectors u,v in V then we found their sum.let u=[x;y]

in V so x,and y are odd integers.similaryly let v=[x',y'] so x' and y' are odd integers.so u+v=[x+x',y+y']

sum of two odd integers is even always(let x=2k+1,x'=2m+1 so x+x'=2(k+m)+2=2(k+m+1) hence x+x' is even)

so x+x' is not odd integer hence u+v is not in V.so axiom 1 fails in this case.hence it is not a vectorspace.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Are the following vector space and why? 1.The set V of all ordered pairs (x, y)...
Are the following vector space and why? 1.The set V of all ordered pairs (x, y) with the addition of R2, but scalar multiplication a(x, y) = (x, y) for all a in R. 2. The set V of all 2 × 2 matrices whose entries sum to 0; operations of M22.
Exercise 9.1.11 Consider the set of all vectors in R2,(x, y) such that x + y...
Exercise 9.1.11 Consider the set of all vectors in R2,(x, y) such that x + y ≥ 0. Let the vector space operations be the usual ones. Is this a vector space? Is it a subspace of R2? Exercise 9.1.12 Consider the vectors in R2,(x, y) such that xy = 0. Is this a subspace of R2? Is it a vector space? The addition and scalar multiplication are the usual operations.
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2,...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2, and ?S is the subset of ?2P2 consisting of all polynomials of the form ?(?)=?2+?.p(x)=x2+c. B. ?=?5(?)V=C5(I), and ?S is the subset of ?V consisting of those functions satisfying the differential equation ?(5)=0.y(5)=0. C. ?V is the vector space of all real-valued functions defined on the interval [?,?][a,b], and ?S is the subset of ?V consisting of those functions satisfying ?(?)=?(?).f(a)=f(b). D. ?=?3(?)V=C3(I), and...
Let U and V be subspaces of the vector space W . Recall that U ∩...
Let U and V be subspaces of the vector space W . Recall that U ∩ V is the set of all vectors ⃗v in W that are in both of U or V , and that U ∪ V is the set of all vectors ⃗v in W that are in at least one of U or V i: Prove: U ∩V is a subspace of W. ii: Consider the statement: “U ∪ V is a subspace of W...
Determine if the given set V is a subspace of the vector space W, where a)...
Determine if the given set V is a subspace of the vector space W, where a) V={polynomials of degree at most n with p(0)=0} and W= {polynomials of degree at most n} b) V={all diagonal n x n matrices with real entries} and W=all n x n matrices with real entries *Can you please show each step and little bit of an explanation on how you got the answer, struggling to learn this concept?*
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T...
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T and v =[ 3 2 2]T. (a) Find its orthogonal complement space V┴ ; (b) Find the dimension of space W = V+ V┴; (c) Find the angle θ between u and v and also the angle β between u and normalized x with respect to its 2-norm. (d) Considering v’ = av, a is a scaler, show the angle θ’ between u and...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.
Let V be a vector space of dimension n > 0, show that (a) Any set...
Let V be a vector space of dimension n > 0, show that (a) Any set of n linearly independent vectors in V forms a basis. (b) Any set of n vectors that span V forms a basis.
1. Consider the set U={(x,y) in R2| -1<x<1 and y=0}. Is U open in R2? Is...
1. Consider the set U={(x,y) in R2| -1<x<1 and y=0}. Is U open in R2? Is it open in R1? Is it open as a subspace of the disk D={(x,y) in R2 | x^2+y^2<1} ? 2. Is there any subset of the plane in which a single point set is open in the subspace topology?