Question

Graph Theory Let v be a vertex of a non trivial graph G. prove that if...

Graph Theory

Let v be a vertex of a non trivial graph G. prove that if G is connected, then v has a neighbor in every component of G-v.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a graph or order n with independence number α(G) = 2. (a) Prove...
Let G be a graph or order n with independence number α(G) = 2. (a) Prove that if G is disconnected, then G contains K⌈ n/2 ⌉ as a subgraph. (b) Prove that if G is connected, then G contains a path (u, v, w) such that uw /∈ E(G) and every vertex in G − {u, v, w} is adjacent to either u or w (or both).
Let G be a graph with vertex set V. Define a relation R from V to...
Let G be a graph with vertex set V. Define a relation R from V to itself as follows: vertex u has this relation R with vertex v, u R v, if there is a path in G from u to v. Prove that this relation is an equivalence relation. Write your proof with complete sentences line by line in a logical order.  If you can, you may write your answer to this question directly in the space provided.Your presentation counts.
Let G be an n-vertex graph with n ≥ 2 and δ(G) ≥ (n-1)/2. Prove that...
Let G be an n-vertex graph with n ≥ 2 and δ(G) ≥ (n-1)/2. Prove that G is connected and that the diameter of G is at most two.
let G be a connected graph such that the graph formed by removing vertex x from...
let G be a connected graph such that the graph formed by removing vertex x from G is disconnected for all but exactly 2 vertices of G. Prove that G must be a path.
Let ? be a connected graph with at least one edge. (a) Prove that each vertex...
Let ? be a connected graph with at least one edge. (a) Prove that each vertex of ? is saturated by some maximum matching in ?. (b) Prove or disprove the following: Every edge of ? is in some maximum matching of ?.
Let G=(V,E) be a connected graph with |V|≥2 Prove that ∀e∈E the graph G∖e=(V,E∖{e}) is disconnected,...
Let G=(V,E) be a connected graph with |V|≥2 Prove that ∀e∈E the graph G∖e=(V,E∖{e}) is disconnected, then G is a tree.
Prove or disapprove each of the following: (a) Every disconnected graph has an isolated vertex. (b)...
Prove or disapprove each of the following: (a) Every disconnected graph has an isolated vertex. (b) A graph is connected if and only if some vertex is connected to all other vertices. (c) If G is a simple, connected, Eulerian graph, with edges e, f that are incident to a common vertex, then G has an Eulerian circuit in which e and f appear consequently.
Graph Theory Prove that if G is a graph with x(G-v-w)=x(G)-2 for every pair of vertices...
Graph Theory Prove that if G is a graph with x(G-v-w)=x(G)-2 for every pair of vertices v and w in G, then G is complete. Hint: assume G is not complete.
Let G be a graph where every vertex has odd degree, and G has a perfect...
Let G be a graph where every vertex has odd degree, and G has a perfect matching. Prove that if M is a perfect matching of G, then every bridge of G is in M. The Proof for this question already on Chegg is wrong
Let G be a graph whose vertex set is a set V = {p1, p2, p3,...
Let G be a graph whose vertex set is a set V = {p1, p2, p3, . . . , p6} of six people. Prove that there exist three people who are all friends with each other, or three people none of whom are friends with each other.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT