Question

Prove or disapprove each of the following: (a) Every disconnected graph has an isolated vertex. (b)...

Prove or disapprove each of the following:

(a) Every disconnected graph has an isolated vertex.

(b) A graph is connected if and only if some vertex is connected to all other vertices.

(c) If G is a simple, connected, Eulerian graph, with edges e, f that are incident to a common vertex, then G has an Eulerian circuit in which e and f appear consequently.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a simple graph in which all vertices have degree four. Prove that it...
Let G be a simple graph in which all vertices have degree four. Prove that it is possible to color the edges of G orange or blue so that each vertex is adjacent to two orange edges and two blue edges. Hint: The graph G has a closed Eulerian walk. Walk along it and color the edges alternately orange and blue.
let G be a connected graph such that the graph formed by removing vertex x from...
let G be a connected graph such that the graph formed by removing vertex x from G is disconnected for all but exactly 2 vertices of G. Prove that G must be a path.
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0...
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0 has a value value(v) associated with it. For every other vertex u in V, define Pred(u) to be the set of vertices that have incoming edges to u. We now define value(u) = ?v∈P red(u) value(v). Design an O(n + m) time algorithm to compute value(u) for all vertices u where n denotes the number of vertices and m denotes the number of edges...
Suppose we are going to color the vertices of a connected planar simple graph such that...
Suppose we are going to color the vertices of a connected planar simple graph such that no two adjacent vertices are with the same color. (a) Prove that if G is a connected planar simple graph, then G has a vertex of degree at most five. (b) Prove that every connected planar simple graph can be colored using six or fewer colors.
a graph is regular of degree k if every vertex has the same degree, k. show...
a graph is regular of degree k if every vertex has the same degree, k. show that G has a hamiltonian circuit if G has 13 vertices and is regular of degree 6.
Graph Theory Let v be a vertex of a non trivial graph G. prove that if...
Graph Theory Let v be a vertex of a non trivial graph G. prove that if G is connected, then v has a neighbor in every component of G-v.
please solve it step by step. thanks Prove that every connected graph with n vertices has...
please solve it step by step. thanks Prove that every connected graph with n vertices has at least n-1 edges. (HINT: use induction on the number of vertices n)
Let ? be a connected graph with at least one edge. (a) Prove that each vertex...
Let ? be a connected graph with at least one edge. (a) Prove that each vertex of ? is saturated by some maximum matching in ?. (b) Prove or disprove the following: Every edge of ? is in some maximum matching of ?.
Graph Theory. A simple graph G with 7 vertices and 10 edges has the following properties:...
Graph Theory. A simple graph G with 7 vertices and 10 edges has the following properties: G has six vertices of degree a and one vertex of degree b. Find a and b, and draw the graph. Show all work.
Let G be a connected simple graph with n vertices and m edges. Prove that G...
Let G be a connected simple graph with n vertices and m edges. Prove that G contains at least m−n+ 1 different subgraphs which are polygons (=circuits). Note: Different polygons can have edges in common. For instance, a square with a diagonal edge has three different polygons (the square and two different triangles) even though every pair of polygons have at least one edge in common.