Question

Graph Theory Prove that if G is a graph with x(G-v-w)=x(G)-2 for every pair of vertices...

Graph Theory

Prove that if G is a graph with x(G-v-w)=x(G)-2 for every pair of vertices v and w in G, then G is complete.

Hint: assume G is not complete.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Exercise 10.5.4: Edge connectivity between two vertices. Two vertices v and w in a graph G...
Exercise 10.5.4: Edge connectivity between two vertices. Two vertices v and w in a graph G are said to be 2-edge-connected if the removal of any edge in the graph leaves v and w in the same connected component. (a) Prove that G is 2-edge-connected if every pair of vertices in G are 2-edge-connected.
Prove that if deg(v) ≤ 4 for all vertices in an (undirected) graph G = (V,...
Prove that if deg(v) ≤ 4 for all vertices in an (undirected) graph G = (V, E), then we can orient all edges in E such that the in-degree of every vertex is at most 2.
Graph Theory Let v be a vertex of a non trivial graph G. prove that if...
Graph Theory Let v be a vertex of a non trivial graph G. prove that if G is connected, then v has a neighbor in every component of G-v.
A K-regular graph G is a graph such that deg(v) = K for all vertices v...
A K-regular graph G is a graph such that deg(v) = K for all vertices v in G. For example, c_9 is a 2-regular graph, because every vertex has degree 2. For some K greater than or equal to 2, neatly draw a simple K-regular graph that has a bridge. If it is impossible, prove why.
Let u and v be distinct vertices in a graph G. Prove that there is a...
Let u and v be distinct vertices in a graph G. Prove that there is a walk from ? to ? if and only if there is a path from ? to ?.
Intro to graph theory question: 1) Draw a graph G with w(G) = 2 (w(g) is...
Intro to graph theory question: 1) Draw a graph G with w(G) = 2 (w(g) is clique number) and x(G) = 5 (x(g) is chromatic number)
Discrete math, graph theory question: Let G be a graph with 100 vertices, and chromatic number...
Discrete math, graph theory question: Let G be a graph with 100 vertices, and chromatic number 99. Prove a lower bound for the clique number of G. (Hint: Any lower bound will do, but try to make it as large as you can.)
A triangle in a graph G=(V,E)is a 3-cycle; i.e. a set of three vertices {u,v,w}such that...
A triangle in a graph G=(V,E)is a 3-cycle; i.e. a set of three vertices {u,v,w}such that (u,v),(v,w),(u,w)∈E . Present an O(n3) Algortihm that will list all triangles.
Graph Theory, discrete math question: Let G be a graph with 100 vertices, and chromatic number...
Graph Theory, discrete math question: Let G be a graph with 100 vertices, and chromatic number 99. Prove a lower bound for the clique number of G. Any lower bound will do, but try to make it as large as you can. Please follow this hint my professor gave and show your work, Thank you!! Hint: can you prove that the clique number is at least 1? Now how about 2? Can you prove that the clique number must be...
Prove that every graph has two vertices with the same degree. (hint: what are the possible...
Prove that every graph has two vertices with the same degree. (hint: what are the possible degrees?)